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Quotient inductive-inductive types

Natural numbers, lists, binary trees, the syntax of terms of a programming language are all
examples of inductive types. In general, an inductive type is a collection of trees of finite
depth with a fixed branching structure. Inductive-inductive types (IITs) [11] generalise
inductive types by allowing multiple mutually defined sorts where the later sorts can be
indexed over the previous ones. Quotient inductive-inductive types (QIITs) [9] in addition
allow equality constructors. They are more general than simple quotients as the elements
of the type are generated at the same time as the quotienting. This allows the constructive
definition of Cauchy real numbers in type theory without using the axiom of choice [12].
Other examples are the partiality monad [3], the intrinsic syntax of programming languages
[4]. In general, for any generalised algebraic theory [5], the initial object in the category
of its models is a QIIT [9].

A simple example of a QIIT is a subset of the intrinsic syntax of type theory [4] with
two sorts, five operators and one equation:

Con : Set

Ty : Con → Set

• : Con

–� – : (γ : Con) → Ty γ → Con

U : Ty γ

El : Ty (γ � U)

Σ : (a : Ty γ) → Ty (γ � a) → Ty γ

eq : γ � Σ a b = γ � a� b

There is an ordinary sort of contexts Con, a sort of types Ty indexed over contexts. That
is, for every γ : Con we have that Ty γ is a sort. There are two operators producing
contexts, empty context • and context extension – � –, the latter refers to types. This is
why Ty cannot be defined separately after Con, they have to be given mutually, at the same
time. There are three different ways to form types corresponding to the three operators
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producing Tys. Finally, the equation eq says that extending a context γ with a Σ type
made of a and b is the same as extending it first with a and then with b.

A model of type theory supports a particular QIIT if (i) there is an algebra called the
constructors: this means that for each sort there is a type, for each operator there are cor-
responding terms and for each equation there is a term of the corresponding identity type;
(ii) for any other algebra there is a unique algebra homomorphism from the constructor
to this algebra. An algebra homomorphism is given by terms (functions) for each sort
that respect the operations up to definitional equality of the model. If they only respect
the operations up to the identity type of the model, we only have propositional (weak)
computation rules for the QIIT. A formal description of these notions is given in [9].

The universal QIIT

If a model of extensional type theory (ETT) supports a particular QIIT called the universal
QIIT (UQIIT), then it supports all QIITs [9]. Hofmann’s conservativity theorem [8] says
that if a type can be expressed in intensional type theory with function extensionality and
uniqueness of identity proofs (ITT+funext+UIP) and there is a term of this type in ETT,
then there is also a term of this type in ITT+funext+UIP. As for any QIIT Ω the type

“the universal QIIT exists ⇒ Ω exists”

can be expressed in ITT+funext+UIP, we can transfer the proof of [9] given in ETT to any
model of ITT+funext+UIP. However as this type expresses the computation rules in “Ω
exists” using the identity type of the model instead of definitional equality, we only obtain
weak computation rules. Thus we have that if a model of ITT+funext+UIP supports the
UQIIT with propositional computation rules, then it supports all QIITs with propositional
computation rules.

The setoid model

The setoid model of type theory [1] justifies funext and UIP and our goal is to show that
it also supports the UQIIT, thus all QIITs with propositional computation rules.

We formalised in Agda the setoid model as a category with families (CwF [6]) with
extra structure. We formalised what it means that this model supports the UQIIT. More
precisely, we formalised what it means for a strict model to support the UQIIT. We
typechecked our formalisation with two strict models: the setoid model and the standard
(set) model. This involves saying what types and terms a UQIIT algebra consists of, what
a UQIIT homomorphism between two such algebras is (with definitional computation
rules) and what it means that two parallel homomorphisms are equal (up to the model’s
identity type). We used a variant of the UQIIT which supports infinitary operations [10].
The formalisation is available at the URL https://bitbucket.org/akaposi/qiit.

In the setoid model a context is given by a set (a type in the metatheory or target
model) and an equivalence relation. A type is a family of sets together with a family of
equivalence relations indexed over those of the context and fibration conditions: if there
are two elements of the context that are related, then we can transport between types at
each element (coercion), and this transport preserves the relation of the type (coherence).
A term is a function between the sets which respects the relation. In the setoid model,
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the identity type is not given by an inductive type once and for all for all types, but by a
separate relation for each type. This relation is inductively generated for inductive types
and is coinductively generated for coinductive types. Specifically, the identity type of two
functions (the function type is a coinductive type) says that they are pointwise equal
(pointwise equality is another function, hence a coinductive type). From the reflexive
property of the equivalence relation we obtain the usual reflexivity constructor of the
identity type. From the fact that all terms respect equality and the coercion operation
of types, we obtain the usual eliminator (transport or J) of the identity type. From the
definition of the relation for function space, we obtain function extensionality and from the
fact that the equivalence relations are proof irrelevant (target Prop [7] instead of Set), we
obtain uniqueness of identity proofs. Thus setoids model ITT+funext+UIP. Moreover, the
setoid model is strict, that is, all equalities are definitional in type theory as metatheory.
This provides a model construction (syntactic translation) [2]: from any model of ITT with
Prop, we obtain a “setoidified” version of the model which satisfies funext and UIP.

QIITs in the setoid model

In the setoid model, we can define the constructors of the UQIIT. This is given by an IIT
with twice as many sorts as the UQIIT: there is a “point sort” for each sort of the QIIT
and an additional propositional sort for its equality. The point sorts have a constructor
for each operation and the indexed point sorts in addition have coercion constructors.
The equality sorts are the free fibrant equivalence congruence relations over the equal-
ity constructors: all of them have constructors for reflexivity, symmetry, transitivity, one
congruence constructor for each operator, one constructor for each equation, and for the
indexed sorts, there is a coherence constructor. For example, we can define our example
QIIT with Con and Ty in the setoid model using the following IIT (sometimes we denote
implicit arguments by curly braces, e.g. in the type of ∼U).

|Con| : Set point sorts

|Ty| : |Con| → Set
...

– ∼Con – : |Con| → |Con| → SProp equality sorts

∼Ty : γ ∼Con γ′ → |Ty| γ → |Ty| γ′ → SProp
...

| • | : |Con| point constructor for

– |�| – : (γ : |Con|) → |Ty| γ → |Con| each operator

|U| : |Ty| γ
...

|El| : |Ty| (γ |�| |U|)
|Σ| : (a : |Ty| γ) → |Ty| (γ |�| a) → |Ty| γ
∼• : | • | ∼Con | • | congruence for

– ∼� – : (γ̄ : γ ∼Con γ′) → ∼Ty γ̄ α α′ → (γ |�|α) ∼Con (γ′ |�|α′) each operator

∼U : {γ̄ : γ ∼Con γ′} → ∼Ty γ̄ (|U| {γ}) (|U| {γ′})
...

∼El : {γ̄ : γ ∼Con γ′} → ∼Ty γ̄ (|El| {γ}) (|El| {γ′})
∼Σ : (ā : ∼Ty γ̄ a a′) → ∼Ty (γ̄ ∼� ā) b b′ →

∼Ty γ̄ (|Σ| a b) (|Σ| a′ b′)
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|eq| : γ |�| |Σ| a b ∼Con γ |�| a |�| b equality constructor

reflCon : (γ : |Con|) → γ ∼Con γ equivalence relations

symCon : γ ∼Con γ′ → γ′ ∼Con γ
...

transCon : γ ∼Con γ′ → γ′ ∼Con γ′′ → γ ∼Con γ′′

reflTy : (a : |Ty| γ) → ∼Ty (reflCon γ) a a

symTy : ∼Ty γ̄ a a′ → ∼Ty (symCon γ̄) a′ a

transTy : ∼Ty γ̄ a a′ → ∼Ty γ̄′ a′ a′′ → ∼Ty (transCon γ̄ γ̄′) a a′′

coeTy : γ ∼Con γ′ → |Ty| γ → |Ty| γ′ fibration conditions

cohTy : (γ̄ : γ ∼Con γ′)(α : |Ty| γ) → ∼Ty γ̄ α (coeTy γ̄ α)
...

We define the IIT for the UQIIT completely analogously. Then the constructor UQIIT
algebra is given exactly by the components of this IIT.

The recursor takes as input a UQIIT algebra in the empty context and returns a homo-
morphism from the constructors to this algebra. The computation rules are definitional.
An algebra in an arbitrary context can be turned into an algebra in the empty context ·.
For example, for a type Γ ⊢ C, we turn it into · ⊢ Π(x : K Γ).C[x], that is to a dependent
function type where the domain is constant (K) Γ. Thus, when we want to use the recur-
sor in a context Γ, we convert the algebra into an algebra in the empty context, and then
we apply the recursor. The computation rules of this lifted recursor are still definitional.
Uniqueness of the recursor and the fact that the recursor is stable under substitution are
proved by induction on the IIT.

Further work

The notion of UQIIT algebra, morphism, the implementation IIT and the recursor in the
empty context are all defined in Agda. The lifting of the recursor to arbitrary context is
still a work in progress.

An alternative of our construction would be to directly reduce a QIIT to an IIT in the
setoid model by induction on the QIIT signature. This way we would avoid going through
the UQIIT and ETT and we expect that we would get definitional computation rules.
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