
Type theory in type theory using single substitutions
Ambrus Kaposi and Szumi Xie

Eötvös Loránd University, Budapest, Hungary, {akaposi|szumi}@inf.elte.hu

In this abstract we define type theory in a minimalistic way: we aim for an intrinsic, that is, well-typed
and quotiented definition of the syntax, that is as small as possible in terms of number of operations and
equations for the substitution calculus. We only introduce operations that are forced upon us. We aim
for a language with Π types, and it turns out that we have to add all the ingredients of the substitution
calculus while introducing the usual rules for Π types (abstraction, application, V and [). When adding
more type formers, we don’t need to extend the substitution calculus anymore.

We need variables in our language, so we introduce sorts of contexts, types and variables.

Con : Set Ty : Con → Set Var : (Γ : Con) → Ty Γ → Set

Contexts are either empty or are built from a context extended with a type.

� : Con – ⊲ – : (Γ : Con) → Ty Γ → Con

We define variables as well-typed De Bruijn indices, but to express these we need to weaken types:
e.g. the zero De Bruijn index vz has a weakened type. We introduce a new sort for substitutions Sub,
an instantiation operation – [–] on types, and a weakening substitution p. For now, Sub seems like an
overkill because we are only using – [p], but it will come handy soon.

Sub : Con → Con → Set – [–] : Ty Γ → SubΔ Γ → TyΔ p : Sub (Γ ⊲ �) Γ

vz : Var (Γ ⊲ �) (�[p]) vs : Var Γ � → Var (Γ ⊲ �) (�[p])

Now we introduce Π types together with an equation on how instantiation with p acts on them. This
is tricky: as Π binds a new variable in its second argument, we need a new version of the weakening
substitution which leaves the last variable untouched. This is why we introduce lifting of a substitution
–+, and now we can state a general instantiation rule for Π which works not only for p, but arbitrary
substitutions (including lifted ones).

Π : (� : Ty Γ) → Ty (Γ ⊲ �) → Ty Γ –+ : (W : SubΔ Γ) → Sub (Δ ⊲ �[W]) (Γ ⊲ �)
Π [] : (Π � �) [W] = Π (�[W]) (�[W+])

In addition to having variables, we need a sort of terms which includes variables and lambda abstraction.

Tm : (Γ : Con) → Ty Γ → Set var : Var Γ � → Tm Γ � lam : Tm (Γ ⊲ �) � → Tm Γ (Π � �)

To express application, we need single substitutions as well because the argument of the function appears
in the return type. In addition to p and –+, 〈–〉 is the third and last operation for creating substitutions.

〈–〉 : Tm Γ � → Sub Γ (Γ ⊲ �) – · – : Tm Γ (Π � �) → (0 : Tm Γ �) → Tm Γ (�[〈0〉])

Now we would like to express the V computation rule, but for this we also need to be able to instantiate
terms (in addition to types).

– [–] : Tm Γ � → (W : SubΔ Γ) → TmΔ (�[W]) ΠV : lam C · 0 = C [〈0〉]

Type theory in type theory using single substitutions Kaposi, Xie

Now that we have instantiation of terms, we need to revisit all operations producing terms and provide
rules on how to instantiate them: first of all, we need instantiation rules for lam and – · –. The rule lam[]
is well-typed because of Π [], however ·[] is not well-typed on its own and requires a new equation [〈〉].

lam[] : (lam C) [W] = lam (C [W+]) [〈〉] : �[〈0〉] [W] = �[W+] [〈0[W]〉] ·[] : (C ·0) [W] = (C [W])·(0[W])

Then we need instantiation rules for variables, we list these for each possible substitution: weakening of a
variable increases the index by one; when instantiating with lifted substitutions and single substitutions,
we have to do case distinction on the De Bruijn index whether it is zero or successor. For the latter two
cases, we need type equations (named [p] [+] and [p] [〈〉]) to typeckeck the term equations.

var G [p] = var (vs G)
[p] [+] : �[p] [W+] = �[W] [p] var vz[W+] = var vz var (vs G) [W+] = var G [W] [p]
[p] [〈〉] : �[p] [〈0〉] = � var vz[〈0〉] = 0 var (vs G) [〈0〉] = var G

Finally, to typecheck the Π[rule, we need our last equation on types.

[p+] [〈vz〉] : �[p+] [〈var vz〉] = � Π[: C = lam (C [p] · var vz)

This concludes all the rules for type theory with Π. We summarise as follows: there are three kinds of
substitutions (single weakening, single substitution, lifted substitution), we have 5 equations describing
how instantiation acts on variables, and 4 equations which describe general properties of instantiation
on types. The rest of the rules are specific to our single type former Π: the only extra requirement is
that each operation is equipped with an instantiation rule (Π [], lam[], ·[]). Perhaps surprisingly, this is
enough to define the syntax: there is no need for Con and Sub to a form a category, no need for parallel
substitutions, empty substitution, parallel weakenings, or other combinations of these.

When adding new type formers, we only need the rules for the type former, and an extra instantiation
(naturality) rule for each operation. For example, a Coquand-universe can be added by U : Ty Γ, El :
Tm ΓU → Ty Γ, c : Ty Γ → Tm ΓU, UV : El (c �) = �, U[: c (El 0) = 0, and three instantiation rules
(note that we need indexing to avoid inconsistency). In [4], we showed that any second-order generalised
algebraic theory (SOGAT) has a single substitution presentation.

In the syntax (initial model, quotient inductive-inductive type) of the above theory, all the rules of
categories with families (CwF [3]) are admissible. That is, by induction on the single substitution syntax,
we can define parallel substitutions (lists of terms) which are composable and form a category; we can
define instantiation by parallel substitutions for types and terms, these have the usual universal property
of comprehension. The main ingredient for this construction is the notion of U-normal form: a kind of
normal form which is still quotiented by ΠV, Π[, but does not include explicit substitutions. If a type is
in U-normal form, we know whether it is Π, U, or El of a term. If a term is in U-normal form, we know
whether it is a variable, a lam, an application or a code for a type (note that any function on an U-normal
has to respect ΠV, Π[, UV, U[). We prove U-normalisation (every term has a unique U-normal form)
and then use induction on U-normal forms to define parallel instantiation and prove its properties.

We formalised the single substitution calculus with an infinite hierarchy of types closed under Π and
U as a quotient inductive-inductive type in Agda, proved U-normalisation for it, and derived all the rules
for the parallel substitution calculus (CwF equipped with Π types and U).

It is clear that the rules for the single substitution calculus are all derivable from the CwF-rules.
The other direction is however not true: there are more models of the single substitution calculus than
the parallel substitution calculus. The situation is analogous to the relationship of combinatory logic
and lambda calculus: the former has more models, but the syntaxes are isomorphic [2]. Our single
substitution calculus is a minimalistic version of B-systems [1] (C-systems are their parallel substitu-
tion analogue): B-systems include telescopes and more equations than our single substitution calculus,
making them equivalent to C-systems.

2

Type theory in type theory using single substitutions Kaposi, Xie

References
[1] Benedikt Ahrens, Jacopo Emmenegger, Paige Randall North, and Egbert Rijke. B-systems and C-systems are

equivalent. The Journal of Symbolic Logic, page 1–9, 2023. doi:10.1017/jsl.2023.41.
[2] Thorsten Altenkirch, Ambrus Kaposi, Artjoms Sinkarovs, and Tamás Végh. Combinatory logic and lambda

calculus are equal, algebraically. In Marco Gaboardi and Femke van Raamsdonk, editors, 8th International
Conference on Formal Structures for Computation and Deduction, FSCD 2023, July 3-6, 2023, Rome, Italy,
volume 260 of LIPIcs, pages 24:1–24:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL:
https://doi.org/10.4230/LIPIcs.FSCD.2023.24, doi:10.4230/LIPICS.FSCD.2023.24.

[3] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped, simply typed,
and dependently typed. CoRR, abs/1904.00827, 2019. URL: http://arxiv.org/abs/1904.00827, arXiv:
1904.00827.

[4] Ambrus Kaposi and Szumi Xie. Second-order generalised algebraic theories: signatures and first-order seman-
tics, 2024. Draft paper. Available: https://akaposi.github.io/sogat.pdf.

3

https://doi.org/10.1017/jsl.2023.41
https://doi.org/10.4230/LIPIcs.FSCD.2023.24
https://doi.org/10.4230/LIPICS.FSCD.2023.24
http://arxiv.org/abs/1904.00827
https://arxiv.org/abs/1904.00827
https://arxiv.org/abs/1904.00827
https://akaposi.github.io/sogat.pdf

	References

