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Abstract
Conatural numbers are a coinductive type dual to the induc-
tively defined natural numbers. The conatural numbers can
represent all natural numbers and an extra element for infin-
ity, this can be useful for representing the amount of steps
taken by a possibly non-terminating program. We can define
functions on conatural numbers by corecursion, however
proof assistants such as Agda require the corecursive defini-
tions to be guarded to make sure that they are productive.
This requirement is often too restrictive, as it disallows the
corecursive occurrence to appear under previously defined
operations. In this paper, we explore some methods to solv-
ing this issue using the running examples of multiplication
and the commutativity of addition on conatural numbers,
then we give comparisons between these methods. As the
main result, this is the first proof that conatural numbers
form an exponential commutative semiring in cubical type
theory without major extensions.

CCS Concepts: • Theory of computation → Type the-
ory; Logic and verification; Constructive mathematics;
Program verification; • Software and its engineering→
Recursion; Data types and structures.

Keywords: conatural number, corecursion, coinduction, pro-
ductivity, guardedness, termination, semiring, cubical type
theory, univalence
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1 Introduction
In dependent type theory, natural numbers are represented
as an inductive type with two constructors, one for zero and
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the other for the successor of a natural number. In the Agda
proof assistant, we write it as follows:

data ℕ : Type where
zero : ℕ
suc : ℕ→ℕ

Categorically, natural numbers are the initial object in the
category of algebras over the 𝟙 + − (or the “Maybe”) endo-
functor. So an equivalent representation of natural numbers
is an inductive type with a single constructor containing a
Maybe of a natural number.

data Maybe (A : Type) : Type where
nothing : Maybe A
just : A → Maybe A

data ℕ : Type where
con : Maybe ℕ →ℕ

We can dualise natural numbers to get conatural numbers,
which are the terminal object in the category of coalgebras
over the 𝟙 + − endofunctor [13]. In Agda, it is a coinductive
record type with one destructor into Maybe of conatural
numbers.

record ℕ∞ : Type where
coinductive
field
pred : Maybe ℕ∞

This destructor is the predecessor function which either fails
or returns another conatural number.

We can define elements ofℕ∞ by copattern matching [3],
that is, we specify what the predecessor is for a particular ele-
ment. As examples, we give the definitions of zero, successor,
and infinity. Zero does not have a predecessor:

zero : ℕ∞
pred zero = nothing

The predecessor of a successor of a number is just that num-
ber:

suc : ℕ∞ → ℕ∞
pred (suc x) = just x

The predecessor of infinity is just infinity:

∞ : ℕ∞
pred ∞ = just ∞
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The above definition for ∞ is not structurally recursive, but
it is guarded, that is, the recursive occurrence is after an
instance of copattern matching (pred), under only construc-
tors (just) [8]. Agda uses guardedness to check whether a
corecursive defintion is productive. A definition is productive
when one can compute the application of any finite amount
of destructors on a corecursive value in a finite amount of
steps. Guardedness is sufficient to show productivity but it
is not necessary, thus Agda is too conservative about which
corecursive definitions it allows.

The conatural numbers can represent all natural numbers
and an extra element for infinity, however, it is not con-
structively isomorphic toℕ+ 𝟙, because all functions out of
the conatural numbers must be continuous [10]. Computa-
tionally, finite amount of output can only depend on finite
amount of input. Topologically, ∞ is the limit of 0, 1, 2, … ,
which must be preserved. We can visualise the topological
space as follows:

0 1 2 3 4 5 6 7
…
∞

As a result of this restriction, we cannot define a function
that decides if an element is equal to ∞.
Our contribution in this paper is to prove that the conat-

ural numbers form an exponential commutative semiring
by guarded corecursion, along the way showing methods to
keep the corecursion guarded. An exponential commutative
semiring is a commutative semiring with a binary operation
for exponentiation satisfying the following equations:

𝑥𝑦𝑧 = (𝑥𝑦)𝑧 𝑥𝑦+𝑧 = 𝑥𝑦𝑥𝑧 (𝑥𝑦)𝑧 = 𝑥𝑧𝑦𝑧

𝑥1 = 𝑥 𝑥0 = 1 1𝑥 = 1

In Section 2, we show how to define addition on conatural
numbers and prove that it is associative, at the same time,
we show that if we naïvely define multiplication and prove
that addition is commutative, they get rejected by Agda be-
cause they are not guarded. In the following sections, we
show three ways to avoid this issue, using multiplication
and commutativity of addition as running examples.
In section 3, we directly use corecursion to define multi-

plication and prove the commutativity of addition, avoiding
reusing any previous definitions to keep guardedness.

In section 4, we use Nils Anders Danielsson’s method [9]
to use an embedded language to define multiplication, and
another language to the prove commutativity of addition.
In section 5, we adapt the previous method to Cubical

Agda, making use of mixed higher-inductive/coinductive
types and the univalence principle to define and prove all
the operations and equations of an exponential commutative
semiring at once.

1.1 Formalisation
In vanilla Agda, it is not possible to prove non-trivial equa-
tions about conatural numbers using the Martin-Löf identity

type [15]. One needs to either postulate the coinduction
principle, or instead use a coinductively defined equivalence
relation, in which case one would need to manually prove
that operations preserve this relation. As such, in this paper
we use Cubical Agda, where the coinduction principle and
other equations can be directly proved thanks to the interac-
tion between copattern matching and the interval [21]. As
an example, the proof below that the predecessor function
is injective cannot be done in vanilla Agda:

pred-inj : ∀ {x y} → pred x ≡ pred y → x ≡ y
pred (pred-inj p i) = p i

With the method in Section 3, we have formalised that
the conatural numbers form a commutative semiring, and
defined the exponentiation operation without proving the
equations. With the method in Section 4 we have proved the
properties of addition. With the last method, in Section 5, we
have a full formalisation that the conatural numbers form
an exponential commutative semiring.

For the details of our proofs, see our formalisation, which
is available at https://github.com/szumixie/conat. It depends
on the Cubical Agda Library [6].

1.2 Related Work
There are some extensions to type theory that can make
corecursive definitions easier to define.

Using sized types, one can attach ordinals to constructors,
which allows corecursion to be done by well-founded re-
cursion on the sizes [14, 2]. This bypasses the guardedness
restriction, however, the current implementation of sized
types in Agda is inconsistent [1].
Guarded recursion adds a modality to type theory and

a fixed point operation which uses the modality to avoid
allowing non-terminating programs [17, 7]. There is an ex-
perimental extension of Agda that implements a version of
this [20].

There is an equivalent non-coinductive representation of
conatural numbers, which are monotonically decreasing (or
increasing) Boolean sequences [10].

(𝑓 ∶ ℕ → 𝟚) × ((𝑚 𝑛 ∶ ℕ) → 𝑛 ≤ 𝑚 → 𝑓 (𝑚) ≤ 𝑓 (𝑛))

Naïm Camille Favier proved that conatural numbers form
a semiring with meet using this representation, avoiding
corecursion [11].

2 Naïve Corecursion
In this section, we attempt to define operations and prove
equations in the most straightforward way with corecursion,
and show that some of these fail to be guarded.

We can define addition of conatural numbers by guarded
corecursion, using a helper function +-match to pattern
match on the predecessor of 𝑥. Note that we use a helper
function instead of Agda’s with-abstraction [18], because
with-abstractions make later proofs about the function more

https://github.com/szumixie/conat
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complicated, as there is no way to refer to the function gen-
erated by the with-abstraction.

_+_ : ℕ∞ →ℕ∞ → ℕ∞
pred (x + y) = +-match (pred x) y

+-match : Maybe ℕ∞ →ℕ∞ → Maybe ℕ∞
+-match nothing y = pred y
+-match (just x’) y = just (x’ + y)

In the first case, we say that the predecessor of 0 + 𝑦 is the
predecessor of 𝑦. In the second case, which is when 𝑥 is non-
zero, we say that the predecessor of 𝑥 + 𝑦 is 𝑥′ + 𝑦 where 𝑥′
is the predecessor of 𝑥.

If we naïvely try to define multiplication by using addition,
then Agda will reject it, unless we use the unsafe TERMI-
NATING pragma.

{-# TERMINATING #-}
_×_ : ℕ∞ →ℕ∞ → ℕ∞
pred (x × y) = ×-match (pred x) y (pred y)

×-match :
Maybe ℕ∞ →ℕ∞ →Maybe ℕ∞ →Maybe ℕ∞

×-match nothing y y’ = nothing
×-match (just x’) y nothing = nothing
×-match (just x’) y (just y’) = just (y’ + x’ × y)

Here we match on both 𝑥 and 𝑦. If neither are zero, then the
predecessor of 𝑥 × 𝑦 is 𝑦 ′ + 𝑥′ × 𝑦, where 𝑥 − 1 = 𝑥′ and
𝑦 − 1 = 𝑦 ′. This definition is rejected by Agda, because it is
not guarded (even though it is productive), as the recursive
call to _×_ is under _+_, which is not a constructor.

We can also prove some of the usual properties of addition
over the conatural numbers, like the associativity of the
addition.

+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
pred (+-assoc x y z i) = +-assoc-match (pred x) y z i

+-assoc-match :
∀ x’ y z →
+-match (+-match x’ y) z ≡ +-match x’ (y + z)

+-assoc-match nothing y z = refl
+-assoc-match (just x’) y z = cong just (+-assoc x’ y z)

This is again a nice instance of guarded corecusion and Agda
happily accepts this as a proof. However, the proof that
addition is commutative is problematic. Let us assume that
we have the following equation to commute suc (whose
definition is problematic for the same reason):

+-suc : ∀ x y → x + suc y ≡ suc (x + y)

Then we can use it to attempt to prove the commutativity
of addition. We make +-comm-match take equations to re-
member that the arguments we match on are equal to the
original values. We only show the case where neither 𝑥 nor
𝑦 are zero:

{-# TERMINATING #-}
+-comm : ∀ x y → x + y ≡ y + x
pred (+-comm x y i) =
+-comm-match x (pred x) y (pred y) refl refl i

+-comm-match :
∀ x x’ y y’ → pred x ≡ x’ → pred y ≡ y’ →
+-match x’ y ≡ +-match y’ x

+-comm-match x (just x’) y (just y’) px py =
cong just
( x’ + y ≡⟨ cong (x’ +_) (pred-inj py) ⟩
x’ + suc y’ ≡⟨ +-suc x’ y’ ⟩
suc (x’ + y’) ≡⟨ cong suc (+-comm x’ y’) ⟩
suc (y’ + x’) ≡⟨ sym (+-suc y’ x’) ⟩
y’ + suc x’ ≡⟨ cong (y’ +_) (pred-inj (sym px)) ⟩
y’ + x ∎)

The same problem arises here as in the definition of mul-
tiplication above. The definition here is productive but not
guarded, because +-comm is used in the equational reason-
ing chain.The chain is composed of the transitivity operation
for equations. However, the transitivity operation is not a
constructor.

3 Direct Corecusion
In this section, we show some examples of how to do corecur-
sion without running into the guardedness issue by coming
up with specific internal states for each corecursion, which
allows us to define the functions in a guarded form.
To avoid the guardedness issue in Section 2, we define

multiplication from scratch instead of reusing addition. First,
we match to check whether either of the arguments is zero.

_×_ : ℕ∞ → ℕ∞→ ℕ∞
pred (x × y) = ×-match (pred x) (pred y)

×-match : Maybe ℕ∞ → Maybe ℕ∞ →Maybe ℕ∞
×-match nothing y’ = nothing
×-match (just x’) nothing = nothing
×-match (just x’) (just y’) = just (x’ ×’ y’)

For the non-zero case, we define a separate operation _×’_
such that 𝑥 ×′ 𝑦 = (𝑥 + 1) × (𝑦 + 1) − 1. The idea for the
function is to count 𝑦 + 1 steps 𝑥 + 1 times. This means
that after each 𝑦 + 1 steps, we have to reset the counter. To
achieve this, we define a helper function which keeps track
of the original 𝑦 which we call 𝑦0.

_×’_ : ℕ∞ → ℕ∞→ ℕ∞
x ×’ y = ×’-helper x y y

×’-helper : ℕ∞ → ℕ∞→ ℕ∞ →ℕ∞
pred (×’-helper x y y₀) =
×’-helper-match x (pred x) (pred y) y₀

×’-helper-match :
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ℕ∞ → Maybe ℕ∞ →Maybe ℕ∞ →ℕ∞ →
Maybe ℕ∞

×’-helper-match x x’ (just y’) y₀ =
just (×’-helper x y’ y₀)

×’-helper-match x (just x’) nothing y₀ =
just (×’-helper x’ y₀ y₀)

×’-helper-match x nothing nothing y₀ =
nothing

If 𝑦 is not zero, we continue by decreasing it by one. If 𝑦 is
zero but 𝑥 is non-zero, then we decrease 𝑥 by one and reset
𝑦 to 𝑦0. If both are zero then we stop. As an example, if we
compute 3 ×′ 2, then we get the following trace for (𝑥, 𝑦):
(3, 2) → (3, 1) → (3, 0) → (2, 2) → … → (0, 1) → (0, 0)

It takes 4 × 3 − 1 = 11 steps for it to terminate.
Exponentiation can be defined as well. We can first define

a _^’_ such that 𝑥 ^′ 𝑦 = (𝑥 +1)𝑦+1 −1, then define a helper
function with the following type corecursively:

_^’_ : ℕ∞ → ℕ∞ →ℕ∞
x ^’ y = ^’-helper (y ∷ replicate y x) x ℕ.zero

^’-helper : NEList∞ ℕ∞ → ℕ∞ →ℕ→ ℕ∞

In the helper function, NEList∞ is a nonempty colist (poten-
tially infinite list), the first argument is an iterated version of
what was done when defining multiplication and the second
argument is the resetting value. The following is an example
trace of 2 ^′ 2

[2, 2, 2] → [1, 2, 2] → [0, 2, 2] → [2, 1, 2] → …
→ [1, 0, 0] → [0, 0, 0]

When some prefix of the colist is filled with zeroes, we need
to recurse into the colist to find the next number to decrease,
but because colist is coinductive and potentially infinite, as
the last argument we keep an inductive natural number to
track how deep we can go and use it to recurse into the colist.

To prove the commutativity of addition, we keep track of
how many steps we have taken so far in the internal state of
the corecursion using a finite natural number. For this, we
introduce an operation for adding a finite natural number to
a conatural number.

infixl 6 _+L_
_+L_ : ℕ→ℕ∞ → ℕ∞
ℕ.zero +L x = x
ℕ.suc n +L x = suc (n +L x)

We also prove that the successor operation can be moved
from the right side of addition to the front of the whole
exression by simple induction on the natural number.

+L-suc : ∀ n x → n +L suc x ≡ suc (n +L x)

Now we prove the commutativity of addition which has the
following type signature:

+-comm : ∀ x y → x + y ≡ y + x

We illustrate the intuition of the proof using the diagram
below. The top line is the left hand side of +-comm, and the
bottom line is the right hand side. We use 𝑥0 and 𝑦0 to denote
the starting 𝑥 and 𝑦 values. At the beginning, we set 𝑛 to be
0, then at each step, if neither 𝑥 or 𝑦 has ended, we decrease
both of them and increase 𝑛 by one. The diagram illustrates
the middle of this process. As we go through 𝑥 and 𝑦, we
learn that both of them must be at least 𝑛, and during the
proof we keep the proof that adding 𝑛 to 𝑥 and 𝑦 gives us
back the original values (𝑥0 and 𝑦0).

𝑛 𝑥 𝑛 + 𝑦 = 𝑦0

𝑦 𝑛 + 𝑥 = 𝑥0

When we reach the end of 𝑥, we learn that it is finite and
equals to some 𝑛. We continue stepping through 𝑦 on both
sides.

𝑛 𝑛 + 𝑦 = 𝑦0

𝑦 𝑛 + 0

When we reach the end of 𝑦, we only have 𝑛 on both sides,
which we can immediately prove equal.

In the formalisation, we have two helper lemmas that cor-
respond to the two diagrams. During corecursion, we gen-
eralise the resulting equation and add equality arguments
to avoid using the transitivity operation after the corecur-
sive call, since transitivity does not preserve guardedness in
Agda. We omit the uninteresting equality proofs below for
readability, abbreviating them with their type (e.g. y₀≡x₀ is a
proof with type y₀ ≡ x₀).

+-comm x y = +-comm-helper₁ ℕ.zero x x y y refl refl

+-comm-helper₁ :
∀ n x x₀ y y₀ → n +L x ≡ x₀ → n +L y ≡ y₀ →
x + y₀ ≡ y + x₀

pred (+-comm-helper₁ n x x₀ y y₀ nx ny i) =
+-comm-helper₁-match n x (pred x) x₀ y (pred y) y₀
refl refl nx ny i

+-comm-helper₁-match :
∀ n x x’ x₀ y y’ y₀ →
pred x ≡ x’ → pred y ≡ y’ →
n +L x ≡ x₀ → n +L y ≡ y₀ →
+-match x’ y₀ ≡ +-match y’ x₀

+-comm-helper₁-match
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n x nothing x₀ y nothing y₀ px py nx ny =
cong pred y₀≡x₀

+-comm-helper₁-match
n x nothing x₀ y (just y’) y₀ px py nx ny =
cong pred y₀≡1+n+y’ ∙
cong just
(+-comm-helper₂ n y’ (n +L y’) refl ∙ y’+n+0≡y’+x₀)

+-comm-helper₁-match
n x (just x’) x₀ y (just y’) y₀ px py nx ny =
cong just
(+-comm-helper₁ (ℕ.suc n) x’ x₀ y’ y₀
1+n+x’≡x₀ 1+n+y’≡y₀)

In the first branch, both 𝑥 and 𝑦 reach zero at the same time,
at which point we can already prove that both sides are equal.
In the second branch, 𝑥 reaches zero first, which is why we
switch to the other lemma. There is a symmetric case where
𝑦 reaches zero first which we omit. The last case is where we
have the corecursive call, stepping through both 𝑥 and 𝑦.
In the second lemma, we similarly have to generalise

the equation to avoid the transitivity operation. The second
branch is an impossible case where we have a contradiction
from the equation assumptions.

+-comm-helper₂ :
∀ n y y₀ → n +L y ≡ y₀ → y₀ ≡ y + (n +L zero)

pred (+-comm-helper₂ n y y₀ ny i) =
+-comm-helper₂-match
n y (pred y) y₀ (pred y₀) refl refl ny i

+-comm-helper₂-match :
∀ n y y’ y₀ y₀’ →
pred y ≡ y’ → pred y₀ ≡ y₀’ → n +L y ≡ y₀ →
y₀’ ≡ +-match y’ (n +L zero)

+-comm-helper₂-match n y nothing y₀ y₀’ py py₀ ny =
sym py₀ ∙ cong pred y₀≡n+0

+-comm-helper₂-match n y (just y’) y₀ nothing py py₀ ny
= impossible

+-comm-helper₂-match n y (just y’) y₀ (just y₀’) py py₀ ny
= cong just (+-comm-helper₂ n y’ y₀’ n+y’≡y₀’)

The commutativity of multiplication can be proved simi-
larly by tracking the steps taken using _+L_.

Defining and proving things directly by guarded corecur-
sion is difficult, since we cannot reuse earlier definitions,
such as addition in the case of the definition of multiplica-
tion. Defining the corecursion and coinduction principles
and then using them can help with managing the proofs.
Using the inductively defined identity type instead of the
cubical path type for equality also helps, as we can pattern
match on them.

4 The Embedded Languages Approach
To avoid the difficulty of working with guarded definitions,
we use Nils Anders Danielsson’s method [9] of defining an
embedded language in this section to keep the definitions
guarded. The only difference is that we define coinductive
types using coinductive records instead of the deprecated
“musical notation” [5].

4.1 Defining Multiplication
We define an embedded language where addition is a con-
structor, this way we can define multiplication in a similar
way as in Section 2 and have Agda accept it without enabling
unsafe features. In this language, we also add a way to embed
conatural numbers and head normal expressions (NExpr).

data Expr : Type where
embedℕ∞ : ℕ∞→ Expr
embed : NExpr → Expr
_‘+_ : Expr → Expr → Expr

These head normal expressions are either zero or a successor
of an expression. They are defined coinductively and mutu-
ally with Expr to allow the definition of multiplication to be
defined corecursively.

record NExpr : Type where
coinductive
field
pred : Maybe Expr

Since Expr is inductive and NExpr is coinductive, this is an
instance of a mixed inductive/coinductive definition [12].
Given this language, we can define multiplication. The

structure of the definition is similar to the one in Section 2,
but here it is guarded, we just need to add some extra embeds:

_‘×_ : ℕ∞ →ℕ∞ →NExpr
pred (x ‘× y) = ‘×-match (pred x) y (pred y)

‘×-match :
Maybe ℕ∞ →ℕ∞ → Maybe ℕ∞ →Maybe Expr

‘×-match nothing y y’ = nothing
‘×-match (just x’) y nothing = nothing
‘×-match (just x’) y (just y’) =
just (embedℕ∞ y’ ‘+ embed (x’ ‘× y))

However, this multiplication exists only as an expression, so
we need to interpret this multiplication into actual conatural
numbers.

First, we need to define a predecessor function on expres-
sions by recursion.

predE : Expr → Maybe Expr
predE (embedℕ∞ x) = predE-embedℕ∞-match (pred x)
predE (embed x) = pred x
predE (x ‘+ y) = predE-+-match (predE x) y

predE-embedℕ∞-match : Maybe ℕ∞ →Maybe Expr
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predE-embedℕ∞-match nothing = nothing
predE-embedℕ∞-match (just x’) = just (embedℕ∞ x’)

predE-+-match : Maybe Expr → Expr → Maybe Expr
predE-+-match nothing y = predE y
predE-+-match (just x’) y = just (x’ ‘+ y)

Then we can interpret the expressions into conatural num-
bers corecursively via the predecessor function above.

interp : Expr → ℕ∞
pred (interp x) = interp-match (predE x)

interp-match : Maybe Expr → Maybe ℕ∞
interp-match nothing = nothing
interp-match (just x’) = just (interp x’)

Finally, we can define multiplication on conatural numbers
by using the multiplication defined in the language, then
interpret it back to conatural numbers.

_×_ : ℕ∞ →ℕ∞ → ℕ∞
x × y = interp (embed (x ‘× y))

4.2 Proving the Commutativity of Addition
To prove the commutativity of addition, we also define an
embedded language (based on Danielsson [9] and Agda stan-
dard library’s Stream reasoning combinators [4]) to make
the equational reasoning possible by adding the symmetry
and transitivity operations on equations as constructors in
this language, including the possibility to use corecursive
steps in a proof.
We define the language as an inductive relation indexed

by conatural numbers. This relation corresponds to the Expr
in Section 4.1.

data _≈_ : ℕ∞ → ℕ∞→ Type where
‘eq : x ≡ y → x ≈ y
‘step : x ‘≈ y → x ≈ y
‘sym : x ≈ y → y ≈ x
‘trans : x ≈ y → y ≈ z → x ≈ z

We alsomutually define a coinductive relation corresponding
to NExpr in Section 4.1.

record _‘≈_ (n k : ℕ∞) : Type where
coinductive
field
pred : Maybe~ _≈_ (pred n) (pred k)

We use the pointwise relation onMaybe values defined as
follows:

data Maybe~ (A~ : A → A → Type) :
Maybe A →Maybe A →Type
where
refl-nothing : Maybe~ A~ nothing nothing
cong-just : A~ a a’ →Maybe~ A~ (just a) (just a’)

We define the predecessor over the new _≈_ relation and
the interpretation into equality analogously to the ones in
Section 4.1.

predE : x ≈ y →Maybe~ _≈_ (pred x) (pred y)
interp : x ≈ y → x ≡ y
interp-match : Maybe~ _≈_ x y → x ≡ y

Let us set up the notation for equational reasoning using
Agda’s standard library’s notation [4].

pattern _‘↺⟨_⟩_ x xy yz = ‘trans {x} (‘step xy) yz
pattern _‘≡⟨_⟩_ x xy yz = ‘trans {x} (‘eq xy) yz

_‘∎ : ∀ a → a ≈ a
x ‘∎ = ‘eq {x} refl

With this we show the usage of the language and equa-
tional reasoning to prove commutativity of addition over
conatural numbers.

First, we prove that suc commutes with addition, in which
we already need to use transitivity, thus we prove it in the
language. We omit the proof here for brevity.

‘+-suc : ∀ x y → x + suc y ‘≈ suc (x + y)

We then interpret the proof in the language into an equality.

+-suc : ∀ x y → x + suc y ≡ suc (x + y)
+-suc x y = interp (‘step (‘+-suc x y))

With everything set up, we are now able to prove commu-
tativity. As in the definition in Section 4.1, the proof here has
almost the same structure as the one in Section 2, but now
it is guarded. We omit the non-recursive cases in ‘+-comm-
match.

‘+-comm : ∀ x y → x + y ‘≈ y + x
pred (‘+-comm x y) =
‘+-comm-match x (pred x) y (pred y) refl refl

‘+-comm-match :
∀ x x’ y y’ → x’ ≡ pred x → y’ ≡ pred y →
Maybe~ _≈_ (+-match x’ y) (+-match y’ x)

‘+-comm-match x (just x’) y (just y’) eq1 eq2 =
cong-just
( x’ + y ‘≡⟨ cong (x’ +_) (pred-inj (sym eq2)) ⟩
x’ + suc y’ ‘↺⟨ ‘+-comm x’ (suc y’) ⟩
suc y’ + x’ ‘≡⟨ pred-inj refl ⟩
suc (y’ + x’) ‘≡⟨ sym (+-suc y’ x’) ⟩
y’ + suc x’ ‘≡⟨ cong (y’ +_) (pred-inj eq1) ⟩
y’ + x ‘∎)

There is one difference in this proof compared to the one in
Section 2, which is that we need to swap two steps. First, we
need to use commutativity to switch the operands of _+_
before making suc the outermost function. This is because
we do not have congruence over suc in our language, but it
could also be added to the language as a constructor.
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The proof only exists in our language so again we convert
it to an equality the same way we did with the +-suc property.

+-comm : ∀ x y → x + y ≡ y + x
+-comm x y = interp (‘step (‘+-comm x y))

This way, Agda sees that the equational reasoning is guarded,
hence it accepts the proof.
We have seen how we can define functions and prove

equations using the method by Danielsson [9]. However, this
method can result in code duplication, as can be seen in the
definition of predE and predE-+-match in Section 4.1, where
we had to duplicate the definition of addition. If we want
to use this definition of multiplication and prove properties
about it, we would need to separately prove how the addition
within the language is related to the addition on conatural
numbers.

A way to avoid the code duplication is to define addition
using interp and the _‘+_ constructor. However, if a coin-
ductive proof depends on the congruence of an operation
such as addition, then we need to add the congruence of that
operation to the proof language, which means that when
interpreting the language into equality, we will have to ex-
plicitly prove the congruence of that operation. This proof
of congruence duplicates the structure of the definition of
the operation. In the next section, we merge operations and
equality proofs into a single language to avoid this problem.

5 AQuotiented Embedded Language
Since we are working in Cubical Agda, which has higher
inductive types, that is datatypes with equality (path) con-
structors, we can adapt the approach in Section 4 to add all
the algebraic operations and equations that we are interested
in into a single embedded language.

5.1 Commutative Semiring
We will first show that the conatural numbers form a com-
mutative semiring.

We mutually define expressions as a higher inductive type
and head normal expressions as a coinductive type. This is
similar to the types in Section 4.1, except we add equations
as constructors for Expr.

data Expr : Type
record NExpr : Type

Head normal expressions are represented as a coinductive
record from which we can extract the predecessor.

record NExpr where
coinductive
field pred : Maybe Expr

In Expr, we include all of the commutative semiring opera-
tions, constants, and equations.

data Expr where
_+_ : Expr → Expr → Expr
+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-comm : ∀ x y → x + y ≡ y + x

zero : Expr
+-idL : ∀ x → zero + x ≡ x

_×_ : Expr → Expr → Expr
×-assoc : ∀ x y z → (x × y) × z ≡ x × (y × z)
×-comm : ∀ x y → x × y ≡ y × x

one : Expr
×-idL : ∀ x → one × x ≡ x

×-distL-+ : ∀ x y z → (x + y) × z ≡ x × z + y × z
×-annihL : ∀ x → zero × x ≡ zero

Since we are working in Cubical Agda, where equations/
paths can have content, we need to also say that the equa-
tions of Expr are proof irrelevant, that is, it is a set.

isSetExpr : isSet Expr

We add a constructor to embed head normal expressions into
expressions as in Section 4.1.

embed : NExpr → Expr

In addition, we add equations to relate taking the predecessor
on head normal expression. Note that here we depend on
the destructor pred of NExpr.

embed-zero :
∀ x → pred x ≡ nothing → embed x ≡ zero

embed-suc :
∀ x x’ → pred x ≡ just x’ → embed x ≡ one + x’

Finally, a constructor for transitivity is added because the
general transitivity function does not preserve guardedness.

trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z

This is a mixed higher-inductive/coinductive definition.
We introduce an abbreviation for adding one to expres-

sions, though it could also be added as a constructor and an
equation.

suc : Expr → Expr
suc x = one + x

We define an inductive predicate IsPred 𝑥′ 𝑥 for conve-
nience, which represents the pred 𝑥 ≡ 𝑥′ equation, but it can
be pattern matched on so it simplifies the proofs.

data IsPred : Maybe Expr → Expr → Type where
nothing : IsPred nothing zero
just : ∀ x’ → IsPred (just x’) (suc x’)

Wewant to define the predecessor function on expressions
by induction. We define the motive and methods (terminol-
ogy from McBride [16]), so the termination checker does not
get in the way. If we do recursion by pattern matching over
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a higher inductive type, some implicit arguments get solved
to an expression that is not reduced and the termination
checker complains. For the motive (the type for the result
of the induction), we want the predecessor of an expression
and a proof that it is indeed the predecessor in terms of the
semiring operations.

record Pred (x : Expr) : Type where
field
pred : Maybe Expr
isPred : IsPred pred x

We need Pred to be a set to be able to eliminate into it.
Fortunately, this fact is easily provable using the combinators
provided by the Agda Cubical library [6].

isSetPred : ∀ x → isSet (Pred x)

We can define the methods (the cases of the induction) for
each constructor in Expr. The one below is the method for
addition:

infixl 6 _+P_
_+P_ : ∀ {x y} → Pred x →Pred y → Pred (x + y)
pred (_+P_ {y} xP yP) = +-pred (pred xP) y (pred yP)
isPred (_+P_ xP yP) = +-isPred (isPred xP) (isPred yP)

If we know the predecessor of 𝑥 and 𝑦, then we can define
the predecessor of 𝑥 + 𝑦.
+-pred :
Maybe Expr → Expr →Maybe Expr → Maybe Expr

+-pred nothing y y’ = y’
+-pred (just x’) y y’ = just (x’ + y)

We then need to prove that it is actually the predecessor,
which we do by using the equality constructors.

+-isPred :
∀ {x x’ y y’} → IsPred x’ x → IsPred y’ y →
IsPred (+-pred x’ y y’) (x + y)

+-isPred {y} nothing p = subst (IsPred _) (sym (+-idL _)) p
+-isPred {y} (just x’) p =
subst (IsPred _) (sym (+-assoc _ _ _)) (just (x’ + y))

We can do the same for multiplication as well, here we
show how to define the predecessor. The structure is again
the same as the one in Section 2 as we can reuse the existing
constructors.

×-pred :
Maybe Expr → Expr →Maybe Expr → Maybe Expr

×-pred nothing y y’ = nothing
×-pred (just x’) y nothing = nothing
×-pred (just x’) y (just y’) = just (y’ + x’ × y)

Below we show the method for the commutativity of addi-
tion, which has the same structure as the proof in Section 2,
and it has less steps due to pattern matching on IsPred. Note
that we do not need to define the isPred component because

IsPred is a proposition. We also omit the less interesting
cases.

+-comm-pred :
∀ {x x’ y y’} → IsPred x’ x → IsPred y’ y →
+-pred x’ y y’ ≡ +-pred y’ x x’

+-comm-pred (just x’) (just y’) =
congS just
( x’ + suc y’ ≡⟨ +-sucR _ _ ⟩
suc (x’ + y’) ≡⟨ cong suc (+-comm _ _) ⟩
suc (y’ + x’) ≡⟨ sym (+-sucR _ _) ⟩
y’ + suc x’ ∎)

We can define the rest of the methods in a similar manner
as the ones above. Using these, we can recursively eliminate
from expressions into Pred.

⟦_⟧P : (x : Expr) → Pred x

With this, we can extract the familiar predE in Section 4.1,
but we also get a proof that it is the predecessor.

predE : Expr → Maybe Expr
predE x = pred ⟦ x ⟧P

isPredE : ∀ x → IsPred (predE x) x
isPredE x = isPred ⟦ x ⟧P

Using the new predecessor function, we can define a head
normalisation function.

interpN : Expr → NExpr
pred (interpN x) = predE x

Thenwe can prove that it is an inverse of embed and that Expr
and NExpr are isomorphic using isPredE and the embed-zero
and embed-suc constructors that we added to the language.

interpN-embed : ∀ x → interpN (embed x) ≡ x
embed-interpN : ∀ x → embed (interpN x) ≡ x
ExprIsoNExpr : Iso Expr NExpr

Now we define a function that embeds conatural numbers
into expressions using the embed constructor.

embedℕ∞ : ℕ∞ → Expr
embedℕ∞ x = embed (embedℕ∞N x)

embedℕ∞N : ℕ∞ → NExpr
pred (embedℕ∞N x) = embedℕ∞-match (pred x)

embedℕ∞-match : Maybe ℕ∞ →Maybe Expr
embedℕ∞-match nothing = nothing
embedℕ∞-match (just x’) = just (embedℕ∞ x’)

We can also interpret expressions into conatural numbers
using predE as in Section 4.1.

interp : Expr → ℕ∞
pred (interp x) = interp-match (predE x)

interp-match : Maybe Expr → Maybe ℕ∞
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interp-match nothing = nothing
interp-match (just x’) = just (interp x’)

These turn out to be inverses. If we embed a conatural
number in the language and then interpret it back to a conat-
ural number, we get back the conatural number we started
with.

interp-embedℕ∞ : ∀ x → interp (embedℕ∞ x) ≡ x
pred (interp-embedℕ∞ x i) =
interp-embedℕ∞-match (pred x) i

interp-embedℕ∞-match :
∀ x’ → interp-match (embedℕ∞-match x’) ≡ x’

interp-embedℕ∞-match nothing = refl
interp-embedℕ∞-match (just x’) =
cong just (interp-embedℕ∞ x’)

If we interpret an expression from the language to conatural
numbers and then we embed it back to the language, then
we get an expression equal to the one we started with. Here
is where we had to use the transitivity constructor, because
otherwise it would not be guarded.

embedℕ∞-interp : ∀ x → embedℕ∞ (interp x) ≡ x
embedℕ∞-interp x =
trans
(cong embed (embedℕ∞-interpN x))
(embed-interpN x)

embedℕ∞-interpN :
∀ x → embedℕ∞N (interp x) ≡ interpN x

pred (embedℕ∞-interpN x i) =
embedℕ∞-interp-match (predE x) i

embedℕ∞-interp-match :
∀ x’ → embedℕ∞-match (interp-match x’) ≡ x’

embedℕ∞-interp-match nothing = refl
embedℕ∞-interp-match (just x’) =
cong just (embedℕ∞-interp x’)

With the roundtrips, we get an isomorphism between Expr
andℕ∞.

ExprIsoℕ∞ : Iso Expr ℕ∞

Now that we have an isomorphism, we get all the op-
erations and equations in Expr for ℕ∞ by the univalence
principle [19]. To do that, we define a record with all the
operations and equations of a commutative semiring.

record ℕ∞Str (A : Type) (pred : A →Maybe A) : Type

For example, we add the following fields (the rest is omitted
for brevity):

field
isSetA : isSet A
_+_ : A → A → A

+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-comm : ∀ x y → x + y ≡ y + x

We can also add equations that relate the predecessor func-
tion with the semiring operations.

field
pred-zero : pred zero ≡ nothing
pred-suc : ∀ x → pred (one + x) ≡ just x
unpred-pred :
∀ x → matchMaybe zero (one +_) (pred x) ≡ x

With the record defined, we can easily define it for Expr.

ℕ∞StrExpr : ℕ∞Str Expr predE

Then, by transporting over the isomorphism using univa-
lence, we get the same record forℕ∞, and thus getting every
single operation and equation in the record for conatural
numbers at once. Note that it is possible to derive this without
univalence, but with more work for every single operation
and equation.

ℕ∞Strℕ∞ : ℕ∞Str ℕ∞ pred
ℕ∞Strℕ∞ =
transport
(cong₂ ℕ∞Str (isoToPath ExprIsoℕ∞) predE≡pred)
ℕ∞StrExpr

Hence we have shown that conatural numbers form a com-
mutative semiring.

5.2 Exponentiation
Now we modify the proof to add exponentiation and its
related equations. We have to extend our previous language
by adding them as constructors.

data Expr where
_^_ : Expr → Expr → Expr
^-assocR-× : ∀ x y z → x ^ (y × z) ≡ (x ^ z) ^ y
^-idR : ∀ x → x ^ one ≡ x

^-distR-+ : ∀ x y z → x ^ (y + z) ≡ x ^ z × x ^ y
^-annihR : ∀ x → x ^ zero ≡ one

^-distL-× : ∀ x y z → (x × y) ^ z ≡ x ^ z × y ^ z
^-annihL : ∀ x → one ^ x ≡ one

However, the current method requires us to specify what
the predecessor of exponentiating two numbers is. To do
this, we create a new operation that represents a “block” of
digits, essentially representing 𝑦 number of the digit 𝑥 in
base 𝑥 +1 (so 𝑥 is always the last digit in the base). This gives
us the following equation:

block 𝑥 𝑦 =
𝑦−1

∑
𝑖=0

𝑥(1 + 𝑥)𝑖 = (1 + 𝑥)𝑦 − 1
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For example, the predecessor of 103 can be represented using
block.

block 9 3 = 9 × 100 + 9 × 101 + 9 × 102 = 999

We add this block operation as a constructor to the lan-
guage, and some equations that correspond to the ones for
exponentiation.

block : Expr → Expr → Expr
block-assocR-× :
∀ x y z → block x (y × z) ≡ block (block x z) y

block-idR : ∀ x → block x one ≡ x

block-distR-+ :
∀ x y z →
block x (y + z) ≡ block x y + block x z × suc x ^ y

block-annihR : ∀ x → block x zero ≡ zero

block-distL-× :
∀ x y z →
block (y + x × suc y) z ≡
block y z + block x z × suc y ^ z

block-annihL : ∀ x → block zero x ≡ zero

We also add the equation that relates exponentiation and
block.

^-sucL : ∀ x y → suc x ^ y ≡ suc (block x y)

Finally, we can add infinity as a constructor and add some
properties about it. For example, the last equation allows us
to prove 𝑥∞ = ∞ for 𝑥 ≥ 2.

∞ : Expr
+-annihL : ∀ x → ∞ + x ≡ ∞
block-∞R : ∀ x → block (suc x) ∞ ≡ ∞

We then add the methods for the constructor we added. Here
we define the predecessor of exponentiation using the afore-
mentioned block constructor.

^-pred :
Maybe Expr → Expr →Maybe Expr → Maybe Expr

^-pred x’ y nothing = just zero
^-pred nothing y (just y’) = nothing
^-pred (just x’) y (just y’) = just (block x’ y)

We can also define the predecessor of block itself using
addition and multiplication from the langauge. For example,
for the predecessor of block 9 3 = 999 we would get (9 −
1) + 99 ∗ (1 + 9) = 8 + 99 ∗ 10.

block-pred :
Expr → Maybe Expr → Maybe Expr → Maybe Expr

block-pred x nothing y’ = nothing
block-pred x (just x’) nothing = nothing
block-pred x (just x’) (just y’) =
just (x’ + block x y’ × suc x)

The operations and equations that we added to Expr are
enough to define the rest of the methods.

The rest of the proof remains the same, we just add the new
operations and equations to the ℕ∞Str record. The result
is that we have the proof that ℕ∞ forms an exponential
commutative semiring. Since we are using Cubical Agda, the
usage of the univalence principle computes [21], the only
problem is that there are some extraneous transports in the
result of the computation, but they are invisible if one only
uses the interface provided by the exponential commutative
semiring and the predecessor. Here we show an example of
defining 2∞ and proving that 2∞ = ∞.

example : ℕ∞
example = suc (suc zero) ^ ∞

_ : example ≡ ∞
_ =
suc (suc zero) ^ ∞ ≡⟨ ^-sucL _ _ ⟩
suc (block (suc zero) ∞) ≡⟨ cong suc (block-∞R _) ⟩
suc ∞ ≡⟨ sym ∞-suc ⟩
∞ ∎

And below is another example which proves that the pre-
decessor of one is zero, this shows that one can also reason
about the predecessor of conatural numbers using the inter-
face.

_ : pred one ≡ just zero
_ =
pred one ≡⟨ cong pred (sym (+-idR one)) ⟩
pred (one + zero) ≡⟨ pred-suc _ ⟩
just zero ∎

In this section, we have seen how to add exponentiation
to the proof, however, we had to modify the original Expr
datatype. As such, this method is not modular, as it is incon-
venient to define and prove more operations and equations
without modifying the original datatype.

6 Conclusion
We studied three methods of reasoning about coinductive
types to circumvent the guardedness issue in Agda. We used
cubical type theory because reasoning about coinductive
types is simpler in it. The third method in Section 5 is the one
where we successfully formalised that conatural numbers
form an exponential commutative semiring. To conclude, we
give a short comparison between the methods.
In Section 3 we directly used corecursion with specific

internal states. Using this method, we did not have to con-
sider creating an intermediate language. However, for every
operation and proof we have to come up with a new state
that can accurately describe the predecessor as the step of
the proofs.
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In Section 4.1 we followed Danielsson’s method [9] and
created a domain speific language to define the multiplica-
tion operation and later in Section 4.2 we defined a language
for proofs to obtain equational reasoning. The problem is we
have to define a new language for every new operation we
want in which we have to include every operation we want
to reuse as a constructor in order to make Agda see the defi-
nition as guarded which quickly leads to code duplication.

In Section 5 we extended our language using the idea that
we can include equations themselves using a mixed higher-
inductive/coinductive definition, which is only allowed in
Cubical Agda. This method allows us to reuse any other
algebraic operation and equation that we are defining at the
same time. With it, we easily proved that conatural numbers
form an exponential commutative semiring, showcasing an
application of the univalence principle. The only problem
with this method is that it is not modular. If we want to
include more operations or properties that we define and
proofs, then we have to extend the already existing datatype
of expressions.
We believe the last method can be generalised to defini-

tions and proofs about other coinductive types, so that one
can easily reason about infinite programs.

7 Future Work
Some questions remain as future work. The method in Sec-
tion 4 can introduce code duplication, while the method in
Section 5 is not modular. We wish to find a modular method
of doing corecursion that is as convenient as these, where
one can reuse other operations and equations, but does not
necessitate code duplication.

Another question is how one can define some more com-
plicated operations, such as tetration or the Ackermann func-
tion, on conatural numbers. Since conatural numbers are a
coinductive type, one defines operations by specifying the
predecessor, however, it is not clear how one can specify the
predecessors of the aforementioned operations.
Lastly, in Section 5, we used a mixed higher-inductive/

coinductive definition to specify the language of expres-
sions, though it is not clear what its semantic justification
is, even though Agda supports it. Unlike mixed inductive/
coinductive types [12], we cannot directly write it as the ter-
minal coalgebra of some functor. If we were to parametrise
Expr with NExpr and pred, then we would have pred ∶
Maybe (Expr NExpr pred), where the type of pred depends
on itself.
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