
The conatural numbers form an
exponential commutative semiring

Szumi Xie Viktor Bense
Eötvös Loránd University (ELTE)

TyDe 2025, Singapore

Natural numbers

data Nat : Type where
zero : Nat
suc : Nat → Nat

1

Natural numbers

data Maybe (A : Type) : Type where
nothing : Maybe A
just : A→ Maybe A

data Nat : Type where
zero-or-suc : Maybe Nat → Nat

2

Conatural numbers

data Maybe (A : Type) : Type where
nothing : Maybe A
just : A→ Maybe A

record Conat : Type where
coinductive
field pred : Maybe Conat

pred : Conat → Maybe Conat

3

Conatural numbers

data Maybe (A : Type) : Type where
nothing : Maybe A
just : A→ Maybe A

record Conat : Type where
coinductive
field pred : Maybe Conat

pred : Conat → Maybe Conat

3

Examples of conatural numbers

zero : Conat
pred zero = nothing

suc : Conat → Conat
pred (suc x) = just x

∞ : Conat
pred ∞ = just ∞

4

Exponential commutative semirings

(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) 𝑥𝑦𝑧 = (𝑥𝑦)𝑧

𝑥 + 𝑦 = 𝑦 + 𝑥 𝑥𝑦 = 𝑦𝑥 𝑥1 = 𝑥
0 + 𝑥 = 𝑥 1𝑥 = 𝑥 𝑥𝑦+𝑧 = 𝑥𝑦𝑥𝑧

(𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧 𝑥0 = 1
0𝑥 = 0 (𝑥𝑦)𝑧 = 𝑥𝑧𝑦𝑧

1𝑥 = 1

5

Rest of the talk

Naïve attempt

Defining good internal states

Using embedded languages

Quotienting the language

Conclusion

6

Naïve attempt

Addition

+ : Conat → Conat → Conat
pred (x + y) with pred x
... | nothing = pred y
... | just x-1 = just (x-1 + y)

7

Multiplication (naïve)

× : Conat → Conat → Conat
pred (x × y) with pred x | pred y
... | nothing | _ = nothing
... | just x-1 | nothing = nothing
... | just x-1 | just y-1 = just (y-1 + x-1 × y)

“Termination checking failed”

8

Multiplication (naïve)

× : Conat → Conat → Conat
pred (x × y) with pred x | pred y
... | nothing | _ = nothing
... | just x-1 | nothing = nothing
... | just x-1 | just y-1 = just (y-1 + x-1 × y)

“Termination checking failed”

8

Commutativity of addition (naïve)

+-comm : ∀ x y → x + y ≡ y + x
pred (+-comm x y i) with pred x | pred y
... | just x-1 | just y-1 =
…
x-1 + suc y-1 ≡⟨ … ⟩
suc (x-1 + y-1) ≡⟨ cong suc (+-comm x-1 y-1) ⟩
suc (y-1 + x-1) ≡⟨ … ⟩
y-1 + suc x-1

“Termination checking failed”

9

Defining good internal states

The corecursor

corec : (S → Maybe S) → S → Conat
pred (corec f s) with f s
... | nothing = nothing
... | just s’ = just (corec f s’)

10

Multiplication using the corecursor

𝑆 ∶= Conat × Conat

e.g. 4 × 3:

(3, 2) → (3, 1) → (3, 0) → (2, 2) → (2, 1) → (2, 0) →
→ (1, 2) → (1, 1) → (1, 0) → (0, 2) → (0, 1) → (0, 0)

11

Commutativity of multiplication using bisimulation

(1 + 𝑘)(𝑚 + 𝑛 + 1) + 𝑚 𝑦

(1 + 𝑘)(𝑚 + 𝑛 + 1) + 𝑚 + 𝑦

𝑚 + 𝑛 + 1 times

𝑚 + 𝑛 + 1 𝑚 + 𝑛 + 1 𝑚 + 𝑛 + 1 𝑚 𝑛 + 1 𝑚 + 𝑛 + 1 𝑚 + 𝑛 + 1

1 + 𝑘 times (1 + 𝑘)(𝑚 + 𝑛) + 𝑚 + 𝑦 times
12

Using embedded languages

A language with addition

Nils Anders Danielsson (2010), “Beating the Productivity Checker Using Embedded
Languages”

data Expr : Type where
embed : NExpr → Expr
+ : Expr → Expr → Expr

record NExpr : Type where
coinductive
field pred : Maybe Expr

This is a mixed inductive/coinductive type

13

Multiplication in the language

fromConat : Conat → NExpr
pred (fromConat x) with pred x
... | nothing = nothing
... | just x-1 = just (embed (fromConat x-1))

×’ : Conat → Conat → NExpr
pred (x ×’ y) with pred x | pred y
... | nothing | _ = nothing
... | just x-1 | nothing = nothing
... | just x-1 | just y-1 = just (embed (fromConat y-1) + embed (x-1 ×’ y))

14

Interpretation of the language

predE : Expr → Maybe Expr
predE (embed x) = pred x
predE (x + y) with predE x
... | nothing = predE y
... | just x-1 = just (x-1 + y)

interp : Expr → Conat
pred (interp x) with predE x
... | nothing = nothing
... | just x-1 = just (interp x-1)

× : Conat → Conat → Conat
x × y = interp (embed (x ×’ y))

15

Trace of multiplication using the language

4 × 3:
4 ×′ 3 → 2 + 3 ×′ 3 → 1 + 3 ×′ 3 → 0 + 3 ×′ 3 → 2 + 2 ×′ 3 → …

16

A language for equations

data _≈_ : Conat → Conat → Type where
embed : x ≈N y → x ≈ y
refl : x ≈ x
sym : x ≈ y → y ≈ x
trans : x ≈ y → y ≈ z → x ≈ z
cong-+ : x ≈ y → z ≈ y → x + z ≈ y + w

…

17

Quotienting the language

A quotiented language

record NExpr where
coinductive
field pred : Maybe Expr

data Expr where
+ : Expr → Expr → Expr
× : Expr → Expr → Expr
zero : Expr
+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-comm : ∀ x y → x + y ≡ y + x
…
embed : NExpr → Expr
embed-zero : ∀ x → pred x ≡ nothing → embed x ≡ zero
embed-suc : ∀ x x-1→ pred x ≡ just x-1 → embed x ≡ one + x-1

This is a mixed higher-inductive/coinductive type
18

Predecessor function for the quotiented language

predE : Expr → Maybe Expr

predE (x + y) with predE x
... | nothing = predE y
... | just x-1 = just (x-1 + y)

predE (x × y) with predE x | predE y
... | nothing | _ = nothing
... | just x-1 | nothing = nothing
... | just x-1 | just y-1 = just (y-1 + x-1 × y)

…

19

Interpretation of the quotiented language

interp : Expr → Conat
pred (interp x) with predE x
... | nothing = nothing
... | just x-1 = just (interp x-1)

embedConat : Conat → Expr
interp-embed : ∀ x → interp (embedConat x) ≡ x
embed-interp : ∀ x → embedConat (interp x) ≡ x

Expr≅Conat : Expr ≅ Conat

20

Deriving the operations and equations for conatural numbers

record ECSemiring (A : Type) : Type where
field
+ : A→ A→ A
× : A→ A→ A
zero : A
+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-comm : ∀ x y → x + y ≡ y + x
…

ExprECSemiring : ECSemiring Expr

ConatECSemiring : ECSemiring Conat
ConatECSemiring =
subst ECSemiring (univalence Expr≅Conat) ExprECSemiring

21

Conclusion

Conclusion

We formalized that conatural numbers form an exponential commutative semiring
in Cubical Agda

We tried different approaches:
• Using the corecursor and bisimulation: we proved that Conats form a
commutative semiring, but it doesn’t scale to the equations involving
exponentiation

• Using a quotiented embedded language: we proved that Conats form an
exponential commutative semiring, but it’s not modular.

22

Unresolved questions

Is there a way to prove this that is both simple and modular?

How to define more complicated functions, such as tetration?

What’s the semantic justification of mixed higher-inductive/coinductive types?

23

	Naïve attempt
	Defining good internal states
	Using embedded languages
	Quotienting the language
	Conclusion

