The conatural numbers form an
exponential commutative semiring

Szumi Xie Viktor Bense
E6tvos Lorand University (ELTE)

TyDe 2025, Singapore

Natural numbers

data Nat : Type where
zero: Nat
suc :Nat - Nat

Natural numbers

data Maybe (A : Type) : Type where
nothing : Maybe A
just :A - Maybe A

data Nat : Type where
zero-or-suc : Maybe Nat - Nat

Conatural numbers

data Maybe (A : Type) : Type where
nothing : Maybe A
just :A > Maybe A

record Conat : Type where
coinductive
field pred : Maybe Conat

Conatural numbers

data Maybe (A : Type) : Type where
nothing : Maybe A
just :A > Maybe A

record Conat : Type where
coinductive
field pred : Maybe Conat

pred : Conat - Maybe Conat

Examples of conatural numbers

zero : Conat
pred zero = nothing

suc : Conat - Conat
pred (suc x) = just x

o : Conat
pred oo = just oo

Exponential commutative semirings

(x+y)+z=x+(y+2) (xy)z = x(y2) X2 = (xV)
X+Y=y+X Xy = yX x'=x
0+x=x Tx=x xV*% = x¥x?

(x+y)z=xz+yz x0=1
0x=0 (xy)* = x%y?

Rest of the talk

Naive attempt

Defining good internal states
Using embedded languages
Quotienting the language

Conclusion

Naive attempt

*+:Conat - Conat - Conat
pred (x + y) with pred x
... | nothing = pred y

. | just x-1 = just (x-1+y)

Multiplication (naive)

x:Conat » Conat - Conat

pred (x x y) with pred x | pred y

... | nothing | _ = nothing

... | just x-1 | nothing = nothing

o | just x-1 | justy-1 =just (y-1+x-1xy)

Multiplication (naive)

x:Conat » Conat - Conat

pred (x x y) with pred x | pred y

... | nothing | _ = nothing

... | just x-1 | nothing = nothing

o | just x-1 | justy-1 =just (y-1+x-1xy)

“Termination checking failed”

Commutativity of addition (naive)

+-comm:VXy > X+y=sy+X
pred (+-comm x y i) with pred x | pred y
. | just x-1 | justy-1=

x-1+sucy-1 =(..)

suc (x-1 + y-1) =(cong suc (+-comm x-1 y-1))
suc (y-1+x-1) =(...)

y-1+ suc x-1

“Termination checRing failed”

Defining good internal states

The corecursor

corec: (S > Maybe S) > S - Conat
pred (corec f s) with f s

... | nothing = nothing

.. | justs’ =just(corecfs’)

Multiplication using the corecursor

S := Conat x Conat
e.g. 4x3:

(3,2) » (3,1) = (3,0) » (2,2) » (2,1) = (2,0) —»
- (1,2) > (1,1) -» (1,0) - (0,2) - (0,1) - (0,0)

Commutativity of multiplication using bisimulation

m+n +1times
A

(T+R)(M+n+1)+m+y

A

(1T+R)(M+n+1)+m

Y YV

m+n+1 m+n+1 m+n+1 M n+1 m+n+1 m+n+1

v v~
1+ Rk times (1+R)(m+n)+m+ytimes

12

Using embedded languages

A language with addition

Nils Anders Danielsson (2010), “Beating the Productivity Checker Using Embedded
Languages”

data Expr : Type where
embed : NExpr - Expr
-t : Expr - Expr > Expr

record NExpr : Type where
coinductive
field pred : Maybe Expr

This is a mixed inductive/coinductive type

13

Multiplication in the language

fromConat : Conat - NExpr

pred (fromConat x) with pred x

... | nothing = nothing

... | just x-1 = just (embed (fromConat x-1))

x": Conat -» Conat - NExpr

pred (x x’ y) with pred x | pred y

... | nothing | _ = nothing

... | just x-1 | nothing = nothing

... | just x-1 | just y-1 = just (embed (fromConat y-1) + embed (x-1 x y))

14

Interpretation of the language

pred; : Expr - Maybe Expr
pred; (embed x) = pred x
predg (x +y) with predg x
... | nothing = pred; y

... | just x-1 = just (x-1+y)

interp : Expr - Conat
pred (interp x) with predg x
... | nothing = nothing
... | just x-1 = just (interp x-1)

x:Conat » Conat - Conat
x x y = interp (embed (x x" y))

15

Trace of multiplication using the language

4 x 3:
4x'352+3%x3>1+3x'3>50+3%x"3>2+2x%x"3 > ..

A language for equations

data _=_: Conat - Conat - Type where
embed:x=zyy > x=zy
refl. :x=x

sym iXx=zy-S>y=Xx
trans :X=zyS>y=z-3x=Zz
CONG-+:X=Y DZ=Yy dX+Z=y+W

Quotienting the language

A quotiented language

record NExpr where
coinductive
field pred : Maybe Expr

data Expr where

T : Expr - Expr - Expr

X : Expr - Expr - Expr

zero : Expr

+-asS0C VXxyz>(x+y)+z=x+(y+2)
+-comm VXy > x+y=sy+x

embed : NExpr - Expr

embed-zero:Vx - pred x = nothing - embed x = zero
embed-suc :V x x-1-> pred x = just x-1 - embed x = one + x-1

This is a mixed higher-inductive/coinductive type

Predecessor function for the quotiented language

predg : Expr - Maybe Expr

predg (x +y) with predg x
... | nothing = pred; y
... | just x-1 = just (x-1 + y)

predg (x x y) with predg x | predg y

... | nothing | _ = nothing

... | just x-1 | nothing = nothing

o | just x-1 | justy-1 =just (y-1+x-1xy)

Interpretation of the quotiented language

interp : Expr - Conat
pred (interp x) with predg x
... | nothing = nothing
... | just x-1 = just (interp x-1)

embedConat :Conat - Expr
interp-embed : V x > interp (embedConat x) = x
embed-interp : V x > embedConat (interp x) = x

ExprzConat : Expr = Conat

20

Deriving the operations and equations for conatural numbers

record ECSemiring (A : Type) : Type where

field
o tA>A-SA
% tAS>A-SA
Zero tA

+-ass0C :Vxyz->(x+y)+z=x+(y+2)
+t-comm:VXy >x+y=sy+x

ExprECSemiring : ECSemiring Expr

ConatECSemiring : ECSemiring Conat
ConatECSemiring =

subst ECSemiring (univalence ExprzConat) ExprECSemiring

21

Conclusion

Conclusion

We formalized that conatural numbers form an exponential commutative semiring
in Cubical Agda
We tried different approaches:

« Using the corecursor and bisimulation: we proved that Conats form a
commutative semiring, but it doesn’t scale to the equations involving
exponentiation

« Using a quotiented embedded language: we proved that Conats form an
exponential commutative semiring, but it's not modular.

22

Unresolved questions

Is there a way to prove this that is both simple and modular?
How to define more complicated functions, such as tetration?

What's the semantic justification of mixed higher-inductive/coinductive types?

23

	Naïve attempt
	Defining good internal states
	Using embedded languages
	Quotienting the language
	Conclusion

