{-# OPTIONS --without-K --prop --rewriting --confluence-check #-} module TT.CwF.Syntax where open import TT.Lib private variable i i₀ i₁ : ℕ data Con : Set postulate Ty : Con → ℕ → Set infixl 2 _▹_ data Con where ◇ : Con _▹_ : (Γ : Con) → Ty Γ i → Con postulate Sub : Con → Con → Set private variable Γ Γ₀ Γ₁ Δ Δ₀ Δ₁ Θ Θ₀ Θ₁ : Con γ γ₀ γ₁ δ δ₀ δ₁ θ : Sub Δ Γ A A₀ A₁ B B₀ B₁ : Ty Γ i infixl 9 _∘_ postulate _∘_ : Sub Δ Γ → Sub Θ Δ → Sub Θ Γ assoc : γ ∘ (δ ∘ θ) ≡ (γ ∘ δ) ∘ θ id : Sub Γ Γ idr : γ ∘ id ≡ γ idl : id ∘ γ ≡ γ infixl 9 _[_]ᵀ postulate _[_]ᵀ : Ty Γ i → Sub Δ Γ → Ty Δ i []ᵀ-∘ : A [ γ ∘ δ ]ᵀ ≡ A [ γ ]ᵀ [ δ ]ᵀ []ᵀ-id : A [ id ]ᵀ ≡ A postulate Tm : (Γ : Con) → Ty Γ i → Set private variable a a₀ a₁ b b₀ b₁ f f₀ f₁ α α₀ α₁ : Tm Γ A ap-[]ᵀᵣ : γ₀ ≡ γ₁ → A [ γ₀ ]ᵀ ≡ A [ γ₁ ]ᵀ ap-[]ᵀᵣ refl = refl ap-Tm : A₀ ≡ A₁ → Tm Γ A₀ ≡ Tm Γ A₁ ap-Tm refl = refl infixl 9 _[_]ᵗ postulate _[_]ᵗ : Tm Γ A → (γ : Sub Δ Γ) → Tm Δ (A [ γ ]ᵀ) []ᵗ-∘ : a [ γ ∘ δ ]ᵗ ≡[ ap-Tm []ᵀ-∘ ] a [ γ ]ᵗ [ δ ]ᵗ []ᵗ-id : a [ id ]ᵗ ≡[ ap-Tm []ᵀ-id ] a infixl 4 _,_ postulate ε : Sub Δ ◇ ε-∘ : ε ∘ γ ≡ ε ◇-η : id ≡ ε p : Sub (Γ ▹ A) Γ q : Tm (Γ ▹ A) (A [ p ]ᵀ) _,_ : (γ : Sub Δ Γ) → Tm Δ (A [ γ ]ᵀ) → Sub Δ (Γ ▹ A) ,-∘ : (γ , a) ∘ δ ≡ (γ ∘ δ , coe (ap-Tm (sym []ᵀ-∘)) (a [ δ ]ᵗ)) ▹-β₁ : p ∘ (γ , a) ≡ γ ▹-β₂ : q [ γ , a ]ᵗ ≡[ ap-Tm (sym []ᵀ-∘ ∙ ap-[]ᵀᵣ ▹-β₁) ] a ▹-η : id ≡ (p , q) ∈ Sub (Γ ▹ A) (Γ ▹ A) opaque unfolding coe ap-∘ᵣ : (δ₀₁ : δ₀ ≡ δ₁) → γ ∘ δ₀ ≡ γ ∘ δ₁ ap-∘ᵣ refl = refl ap-[]ᵀ : A₀ ≡ A₁ → A₀ [ γ ]ᵀ ≡ A₁ [ γ ]ᵀ ap-[]ᵀ refl = refl apᵈ-[]ᵗ : (A₀₁ : A₀ ≡ A₁) → a₀ ≡[ ap-Tm A₀₁ ] a₁ → a₀ [ γ ]ᵗ ≡[ ap-Tm (ap-[]ᵀ A₀₁) ] a₁ [ γ ]ᵗ apᵈ-[]ᵗ refl refl = refl ap-, : (γ₀₁ : γ₀ ≡ γ₁) → a₀ ≡[ ap-Tm (ap-[]ᵀᵣ γ₀₁) ] a₁ → (γ₀ , a₀) ≡ (γ₁ , a₁) ap-, refl refl = refl infixl 10 _⁺ _⁺ : (γ : Sub Δ Γ) → Sub (Δ ▹ A [ γ ]ᵀ) (Γ ▹ A) γ ⁺ = γ ∘ p , coe (ap-Tm (sym []ᵀ-∘)) q ⟨_⟩ : Tm Γ A → Sub Γ (Γ ▹ A) ⟨ a ⟩ = id , coe (ap-Tm (sym []ᵀ-id)) a ⟨⟩-∘ : ⟨ a ⟩ ∘ γ ≡ γ ⁺ ∘ ⟨ a [ γ ]ᵗ ⟩ ⟨⟩-∘ = ,-∘ ∙ ap-, (idl ∙ sym idr ∙ ap-∘ᵣ (sym ▹-β₁) ∙ assoc) (splitlr ( apᵈ-[]ᵗ []ᵀ-id (splitl reflᵈ) ∙ᵈ symᵈ (merger ▹-β₂) ∙ᵈ apᵈ-[]ᵗ (sym []ᵀ-∘) refl)) ∙ sym ,-∘ ▹-η′ : id ≡ p ⁺ ∘ ⟨ q ⟩ ∈ Sub (Γ ▹ A) (Γ ▹ A) ▹-η′ = ▹-η ∙ ap-, (sym idr ∙ ap-∘ᵣ (sym ▹-β₁) ∙ assoc) (splitr (symᵈ (merger ▹-β₂) ∙ᵈ apᵈ-[]ᵗ (sym []ᵀ-∘) refl)) ∙ sym ,-∘ postulate U : (i : ℕ) → Ty Γ (suc i) U-[] : U i [ γ ]ᵀ ≡ U i El : Tm Γ (U i) → Ty Γ i El-[] : El α [ γ ]ᵀ ≡ El (coe (ap-Tm U-[]) (α [ γ ]ᵗ)) c : Ty Γ i → Tm Γ (U i) c-[] : c A [ γ ]ᵗ ≡[ ap-Tm U-[] ] c (A [ γ ]ᵀ) U-β : El (c A) ≡ A U-η : α ≡ c (El α) postulate Lift : Ty Γ i → Ty Γ (suc i) Lift-[] : Lift A [ γ ]ᵀ ≡ Lift (A [ γ ]ᵀ) lower : Tm Γ (Lift A) → Tm Γ A lower-[] : lower a [ γ ]ᵗ ≡ lower (coe (ap-Tm Lift-[]) (a [ γ ]ᵗ)) lift : Tm Γ A → Tm Γ (Lift A) lift-[] : lift a [ γ ]ᵗ ≡[ ap-Tm Lift-[] ] lift (a [ γ ]ᵗ) Lift-β : lower (lift a) ≡ a Lift-η : lift (lower a) ≡ a postulate Π : (A : Ty Γ i) → Ty (Γ ▹ A) i → Ty Γ i Π-[] : Π A B [ γ ]ᵀ ≡ Π (A [ γ ]ᵀ) (B [ γ ⁺ ]ᵀ) app : Tm Γ (Π A B) → (a : Tm Γ A) → Tm Γ (B [ ⟨ a ⟩ ]ᵀ) app-[] : app f a [ γ ]ᵗ ≡[ ap-Tm (sym []ᵀ-∘ ∙ ap-[]ᵀᵣ ⟨⟩-∘ ∙ []ᵀ-∘) ] app (coe (ap-Tm Π-[]) (f [ γ ]ᵗ)) (a [ γ ]ᵗ) lam : Tm (Γ ▹ A) B → Tm Γ (Π A B) lam-[] : lam b [ γ ]ᵗ ≡[ ap-Tm Π-[] ] lam (b [ γ ⁺ ]ᵗ) ap-Π : B₀ ≡ B₁ → Π A B₀ ≡ Π A B₁ ap-Π refl = refl postulate Π-β : app (lam b) a ≡ b [ ⟨ a ⟩ ]ᵗ Π-η : f ≡[ ap-Tm (ap-Π (sym []ᵀ-id ∙ ap-[]ᵀᵣ ▹-η′ ∙ []ᵀ-∘)) ] lam (app (coe (ap-Tm Π-[]) (f [ p ]ᵗ)) q) opaque unfolding coe ap-Subₗ : Δ₀ ≡ Δ₁ → Sub Δ₀ Γ ≡ Sub Δ₁ Γ ap-Subₗ refl = refl ap-Sub : Δ₀ ≡ Δ₁ → Γ₀ ≡ Γ₁ → Sub Δ₀ Γ₀ ≡ Sub Δ₁ Γ₁ ap-Sub refl refl = refl postulate Sub-inj-Δ : Sub Δ₀ Γ₀ ≡ Sub Δ₁ Γ₁ → Δ₀ ≡ Δ₁ Sub-inj-Γ : Sub Δ₀ Γ₀ ≡ Sub Δ₁ Γ₁ → Γ₀ ≡ Γ₁ ap-∘ₗ : γ₀ ≡ γ₁ → γ₀ ∘ δ ≡ γ₁ ∘ δ ap-∘ₗ refl = refl ap-∘₃ : (Δ₀₁ : Δ₀ ≡ Δ₁) → γ₀ ≡[ ap-Subₗ Δ₀₁ ] γ₁ → δ₀ ≡[ ap-Sub refl Δ₀₁ ] δ₁ → γ₀ ∘ δ₀ ≡ γ₁ ∘ δ₁ ap-∘₃ refl refl refl = refl apᵈ-∘ᵣ : (Θ₀₁ : Θ₀ ≡ Θ₁) → δ₀ ≡[ ap-Subₗ Θ₀₁ ] δ₁ → γ ∘ δ₀ ≡[ ap-Subₗ Θ₀₁ ] γ ∘ δ₁ apᵈ-∘ᵣ refl refl = refl apᵈ-∘ : (Δ₀₁ : Δ₀ ≡ Δ₁) (Γ₀₁ : Γ₀ ≡ Γ₁) → γ₀ ≡[ ap-Sub Δ₀₁ Γ₀₁ ] γ₁ → (Θ₀₁ : Θ₀ ≡ Θ₁) → δ₀ ≡[ ap-Sub Θ₀₁ Δ₀₁ ] δ₁ → γ₀ ∘ δ₀ ≡[ ap-Sub Θ₀₁ Γ₀₁ ] γ₁ ∘ δ₁ apᵈ-∘ refl refl refl refl refl = refl apᵈ-id : (Γ₀₁ : Γ₀ ≡ Γ₁) → id ≡[ ap-Sub Γ₀₁ Γ₀₁ ] id apᵈ-id refl = refl ap-Ty : Γ₀ ≡ Γ₁ → Ty Γ₀ i ≡ Ty Γ₁ i ap-Ty refl = refl ap-Ty₂ : Γ₀ ≡ Γ₁ → i₀ ≡ i₁ → Ty Γ₀ i₀ ≡ Ty Γ₁ i₁ ap-Ty₂ refl refl = refl postulate Ty-inj-Γ : Ty Γ₀ i₀ ≡ Ty Γ₁ i₁ → Γ₀ ≡ Γ₁ Ty-inj-i : Ty Γ₀ i₀ ≡ Ty Γ₁ i₁ → i₀ ≡ i₁ apᵈ-[]ᵀᵣ : (Δ₀₁ : Δ₀ ≡ Δ₁) → γ₀ ≡[ ap-Subₗ Δ₀₁ ] γ₁ → A [ γ₀ ]ᵀ ≡[ ap-Ty Δ₀₁ ] A [ γ₁ ]ᵀ apᵈ-[]ᵀᵣ refl refl = refl apᵈ-[]ᵀ₃ : A₀ ≡ A₁ → (Δ₀₁ : Δ₀ ≡ Δ₁) → γ₀ ≡[ ap-Subₗ Δ₀₁ ] γ₁ → A₀ [ γ₀ ]ᵀ ≡[ ap-Ty Δ₀₁ ] A₁ [ γ₁ ]ᵀ apᵈ-[]ᵀ₃ refl refl refl = refl apᵈ-[]ᵀ : (Γ₀₁ : Γ₀ ≡ Γ₁) → A₀ ≡[ ap-Ty Γ₀₁ ] A₁ → (Δ₀₁ : Δ₀ ≡ Δ₁) → γ₀ ≡[ ap-Sub Δ₀₁ Γ₀₁ ] γ₁ → A₀ [ γ₀ ]ᵀ ≡[ ap-Ty Δ₀₁ ] A₁ [ γ₁ ]ᵀ apᵈ-[]ᵀ refl refl refl refl = refl ap-Tm₂ : (Γ₀₁ : Γ₀ ≡ Γ₁) → A₀ ≡[ ap-Ty Γ₀₁ ] A₁ → Tm Γ₀ A₀ ≡ Tm Γ₁ A₁ ap-Tm₂ refl refl = refl ap-Tm₃ : (Γ₀₁ : Γ₀ ≡ Γ₁) (i₀₁ : i₀ ≡ i₁) → A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁ → Tm Γ₀ A₀ ≡ Tm Γ₁ A₁ ap-Tm₃ refl refl refl = refl postulate Tm-inj-Γ : Tm Γ₀ A₀ ≡ Tm Γ₁ A₁ → Γ₀ ≡ Γ₁ Tm-inj-i : {A₀ : Ty Γ₀ i₀} {A₁ : Ty Γ₁ i₁} → Tm Γ₀ A₀ ≡ Tm Γ₁ A₁ → i₀ ≡ i₁ Tm-inj-A : (e : Tm Γ₀ A₀ ≡ Tm Γ₁ A₁) → A₀ ≡[ ap-Ty₂ (Tm-inj-Γ e) (Tm-inj-i e) ] A₁ apᵈ-[]ᵗᵣ : (γ₀₁ : γ₀ ≡ γ₁) → a [ γ₀ ]ᵗ ≡[ ap-Tm (ap-[]ᵀᵣ γ₀₁) ] a [ γ₁ ]ᵗ apᵈ-[]ᵗᵣ refl = refl apᵈ-[]ᵗ₄ : (A₀₁ : A₀ ≡ A₁) → a₀ ≡[ ap-Tm A₀₁ ] a₁ → (Δ₀₁ : Δ₀ ≡ Δ₁) (γ₀₁ : γ₀ ≡[ ap-Subₗ Δ₀₁ ] γ₁) → a₀ [ γ₀ ]ᵗ ≡[ ap-Tm₂ Δ₀₁ (apᵈ-[]ᵀ₃ A₀₁ Δ₀₁ γ₀₁) ] a₁ [ γ₁ ]ᵗ apᵈ-[]ᵗ₄ refl refl refl refl = refl apᵈ-[]ᵗ₅ : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → a₀ ≡[ ap-Tm₂ Γ₀₁ A₀₁ ] a₁ → (Δ₀₁ : Δ₀ ≡ Δ₁) (γ₀₁ : γ₀ ≡[ ap-Sub Δ₀₁ Γ₀₁ ] γ₁) → a₀ [ γ₀ ]ᵗ ≡[ ap-Tm₂ Δ₀₁ (apᵈ-[]ᵀ Γ₀₁ A₀₁ Δ₀₁ γ₀₁) ] a₁ [ γ₁ ]ᵗ apᵈ-[]ᵗ₅ refl refl refl refl refl = refl apᵈ-ε : (Γ₀₁ : Γ₀ ≡ Γ₁) → ε ≡[ ap-Subₗ Γ₀₁ ] ε apᵈ-ε refl = refl ap-▹ᵣ : A₀ ≡ A₁ → (Γ ▹ A₀) ≡ (Γ ▹ A₁) ap-▹ᵣ refl = refl ap-▹ : (Γ₀₁ : Γ₀ ≡ Γ₁) → A₀ ≡[ ap-Ty Γ₀₁ ] A₁ → (Γ₀ ▹ A₀) ≡ (Γ₁ ▹ A₁) ap-▹ refl refl = refl apᵈ-p : (A₀₁ : A₀ ≡ A₁) → p ≡[ ap-Subₗ (ap-▹ᵣ A₀₁) ] p apᵈ-p refl = refl apᵈ-p₂ : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → p ≡[ ap-Sub (ap-▹ Γ₀₁ A₀₁) Γ₀₁ ] p apᵈ-p₂ refl refl = refl apᵈ-q : (A₀₁ : A₀ ≡ A₁) → q ≡[ ap-Tm₂ (ap-▹ᵣ A₀₁) (apᵈ-[]ᵀ₃ A₀₁ (ap-▹ᵣ A₀₁) (apᵈ-p A₀₁)) ] q apᵈ-q refl = refl apᵈ-q₂ : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → q ≡[ ap-Tm₂ (ap-▹ Γ₀₁ A₀₁) (apᵈ-[]ᵀ Γ₀₁ A₀₁ (ap-▹ Γ₀₁ A₀₁) (apᵈ-p₂ Γ₀₁ A₀₁)) ] q apᵈ-q₂ refl refl = refl apᵈ-, : (Δ₀₁ : Δ₀ ≡ Δ₁) (γ₀₁ : γ₀ ≡[ ap-Subₗ Δ₀₁ ] γ₁) → a₀ ≡[ ap-Tm₂ Δ₀₁ (apᵈ-[]ᵀᵣ Δ₀₁ γ₀₁) ] a₁ → (γ₀ , a₀) ≡[ ap-Subₗ Δ₀₁ ] (γ₁ , a₁) apᵈ-, refl refl refl = refl apᵈ-,₅ : (Δ₀₁ : Δ₀ ≡ Δ₁) (Γ₀₁ : Γ₀ ≡ Γ₁) (γ₀₁ : γ₀ ≡[ ap-Sub Δ₀₁ Γ₀₁ ] γ₁) → (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → a₀ ≡[ ap-Tm₂ Δ₀₁ (apᵈ-[]ᵀ Γ₀₁ A₀₁ Δ₀₁ γ₀₁) ] a₁ → (γ₀ , a₀) ≡[ ap-Sub Δ₀₁ (ap-▹ Γ₀₁ A₀₁) ] (γ₁ , a₁) apᵈ-,₅ refl refl refl refl refl = refl apᵈ-⁺ : (A₀₁ : A₀ ≡ A₁) → γ ⁺ ≡[ ap-Sub (ap-▹ᵣ (ap-[]ᵀ A₀₁)) (ap-▹ᵣ A₀₁) ] γ ⁺ apᵈ-⁺ refl = refl apᵈ-⟨⟩ : (A₀₁ : A₀ ≡ A₁) → a₀ ≡[ ap-Tm A₀₁ ] a₁ → ⟨ a₀ ⟩ ≡[ ap-Sub refl (ap-▹ᵣ A₀₁) ] ⟨ a₁ ⟩ apᵈ-⟨⟩ refl refl = refl apᵈ-⟨⟩₃ : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → a₀ ≡[ ap-Tm₂ Γ₀₁ A₀₁ ] a₁ → ⟨ a₀ ⟩ ≡[ ap-Sub Γ₀₁ (ap-▹ Γ₀₁ A₀₁) ] ⟨ a₁ ⟩ apᵈ-⟨⟩₃ refl refl refl = refl ⁺-⟨⟩ : γ ⁺ ∘ ⟨ a ⟩ ≡ (γ , a) ⁺-⟨⟩ = ,-∘ ∙ ap-, (sym assoc ∙ ap-∘ᵣ ▹-β₁ ∙ idr) (splitl (apᵈ-[]ᵗ []ᵀ-∘ (splitl reflᵈ) ∙ᵈ merger ▹-β₂)) ⁺-∘ : (γ ∘ δ) ⁺ ≡[ ap-Subₗ (ap-▹ᵣ []ᵀ-∘) ] γ ⁺ ∘ δ ⁺ ∈ Sub (Θ ▹ A [ γ ]ᵀ [ δ ]ᵀ) (Γ ▹ A) ⁺-∘ = apᵈ-, (ap-▹ᵣ []ᵀ-∘) ( dep (sym assoc) ∙ᵈ apᵈ-∘ᵣ (ap-▹ᵣ []ᵀ-∘) (apᵈ-∘ᵣ (ap-▹ᵣ []ᵀ-∘) (apᵈ-p []ᵀ-∘) ∙ᵈ dep (sym ▹-β₁)) ∙ᵈ dep assoc) (splitlr ( symᵈ (merger {A₂₁ = ap-Tm (ap-[]ᵀ []ᵀ-∘ ∙ sym []ᵀ-∘)} ▹-β₂) ∙ᵈ apᵈ-[]ᵗ₄ (sym []ᵀ-∘) refl (ap-▹ᵣ []ᵀ-∘) (apᵈ-, (ap-▹ᵣ []ᵀ-∘) (apᵈ-∘ᵣ (ap-▹ᵣ []ᵀ-∘) (apᵈ-p []ᵀ-∘)) (splitlr (apᵈ-q []ᵀ-∘))))) ∙ᵈ dep (sym ,-∘) ⁺-id : id ⁺ ≡[ ap-Subₗ (ap-▹ᵣ []ᵀ-id) ] id ∈ Sub (Γ ▹ A) (Γ ▹ A) ⁺-id = apᵈ-, (ap-▹ᵣ []ᵀ-id) (dep idl ∙ᵈ apᵈ-p []ᵀ-id) (splitl (apᵈ-q []ᵀ-id)) ∙ᵈ dep (sym ▹-η) opaque unfolding coe apᵈ-U : (Γ₀₁ : Γ₀ ≡ Γ₁) → U i ≡[ ap-Ty Γ₀₁ ] U i apᵈ-U refl = refl apᵈ-El : (Γ₀₁ : Γ₀ ≡ Γ₁) → α₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-U Γ₀₁) ] α₁ → El α₀ ≡[ ap-Ty Γ₀₁ ] El α₁ apᵈ-El refl refl = refl apᵈ-c : (Γ₀₁ : Γ₀ ≡ Γ₁) → A₀ ≡[ ap-Ty Γ₀₁ ] A₁ → c A₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-U Γ₀₁) ] c A₁ apᵈ-c refl refl = refl apᵈ-Lift : (Γ₀₁ : Γ₀ ≡ Γ₁) → A₀ ≡[ ap-Ty Γ₀₁ ] A₁ → Lift A₀ ≡[ ap-Ty Γ₀₁ ] Lift A₁ apᵈ-Lift refl refl = refl apᵈ-lower : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → a₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-Lift Γ₀₁ A₀₁) ] a₁ → lower a₀ ≡[ ap-Tm₂ Γ₀₁ A₀₁ ] lower a₁ apᵈ-lower refl refl refl = refl apᵈ-lift : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → a₀ ≡[ ap-Tm₂ Γ₀₁ A₀₁ ] a₁ → lift a₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-Lift Γ₀₁ A₀₁) ] lift a₁ apᵈ-lift refl refl refl = refl apᵈ-Π : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) → B₀ ≡[ ap-Ty (ap-▹ Γ₀₁ A₀₁) ] B₁ → Π A₀ B₀ ≡[ ap-Ty Γ₀₁ ] Π A₁ B₁ apᵈ-Π refl refl refl = refl apᵈ-app : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) (B₀₁ : B₀ ≡[ ap-Ty (ap-▹ Γ₀₁ A₀₁) ] B₁) → f₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-Π Γ₀₁ A₀₁ B₀₁) ] f₁ → (a₀₁ : a₀ ≡[ ap-Tm₂ Γ₀₁ A₀₁ ] a₁) → app f₀ a₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-[]ᵀ (ap-▹ Γ₀₁ A₀₁) B₀₁ Γ₀₁ (apᵈ-⟨⟩₃ Γ₀₁ A₀₁ a₀₁)) ] app f₁ a₁ apᵈ-app refl refl refl refl refl = refl apᵈ-lam : (Γ₀₁ : Γ₀ ≡ Γ₁) (A₀₁ : A₀ ≡[ ap-Ty Γ₀₁ ] A₁) (B₀₁ : B₀ ≡[ ap-Ty (ap-▹ Γ₀₁ A₀₁) ] B₁) → b₀ ≡[ ap-Tm₂ (ap-▹ Γ₀₁ A₀₁) B₀₁ ] b₁ → lam b₀ ≡[ ap-Tm₂ Γ₀₁ (apᵈ-Π Γ₀₁ A₀₁ B₀₁) ] lam b₁ apᵈ-lam refl refl refl refl = refl