{-# OPTIONS
--without-K
--prop
--rewriting
--confluence-check
#-}
module TT.CwF.Ind where
open import TT.Lib
open import TT.CwF.Syntax
private variable
i i₀ i₁ : ℕ
Γ Γ₀ Γ₁ Δ Δ₀ Δ₁ : Con
γ γ₀ γ₁ δ δ₀ δ₁ : Sub Δ Γ
A A₀ A₁ B B₀ B₁ : Ty Γ i
a a₀ a₁ b f α : Tm Γ A
module DM where
record Sorts : Set₁ where
no-eta-equality
field
Conᴹ : Con → Set
Subᴹ : Conᴹ Δ → Conᴹ Γ → Sub Δ Γ → Set
Tyᴹ : Conᴹ Γ → (i : ℕ) → Ty Γ i → Set
Tmᴹ : (Γᴹ : Conᴹ Γ) → Tyᴹ Γᴹ i A → Tm Γ A → Set
private variable
Γᴹ Δᴹ : Conᴹ Γ
Aᴹ₀ Aᴹ₁ : Tyᴹ Γᴹ i A
opaque
unfolding coe
ap-Subᴹ : γ₀ ≡ γ₁ → Subᴹ Δᴹ Γᴹ γ₀ ≡ Subᴹ Δᴹ Γᴹ γ₁
ap-Subᴹ refl = refl
ap-Tyᴹ : A₀ ≡ A₁ → Tyᴹ Γᴹ i A₀ ≡ Tyᴹ Γᴹ i A₁
ap-Tyᴹ refl = refl
ap-Tmᴹ :
(A₀₁ : A₀ ≡ A₁) → Aᴹ₀ ≡[ ap-Tyᴹ A₀₁ ] Aᴹ₁ →
a₀ ≡[ ap-Tm A₀₁ ] a₁ → Tmᴹ Γᴹ Aᴹ₀ a₀ ≡ Tmᴹ Γᴹ Aᴹ₁ a₁
ap-Tmᴹ refl refl refl = refl
module _ (sorts : Sorts) where
open Sorts sorts
private variable
Γᴹ Δᴹ Θᴹ : Conᴹ Γ
γᴹ γᴹ₀ γᴹ₁ δᴹ δᴹ₀ δᴹ₁ θᴹ : Subᴹ Δᴹ Γᴹ γ
Aᴹ Aᴹ₀ Aᴹ₁ Bᴹ Bᴹ₀ Bᴹ₁ : Tyᴹ Γᴹ i A
aᴹ aᴹ₀ aᴹ₁ bᴹ fᴹ αᴹ : Tmᴹ Γᴹ Aᴹ a
private
module Core-util
(_[_]ᵀᴹ :
∀ {Γ i A Δ γ} {Γᴹ : Conᴹ Γ} {Δᴹ : Conᴹ Δ} →
Tyᴹ Γᴹ i A → Subᴹ Δᴹ Γᴹ γ → Tyᴹ Δᴹ i (A [ γ ]ᵀ))
where
opaque
unfolding coe
apᵈ-[]ᵀᴹᵣ :
(γ₀₁ : γ₀ ≡ γ₁) → γᴹ₀ ≡[ ap-Subᴹ γ₀₁ ] γᴹ₁ →
Aᴹ [ γᴹ₀ ]ᵀᴹ ≡[ ap-Tyᴹ (ap-[]ᵀᵣ γ₀₁) ] Aᴹ [ γᴹ₁ ]ᵀᴹ
apᵈ-[]ᵀᴹᵣ refl refl = refl
record Core : Set where
no-eta-equality
infixl 9 _∘ᴹ_ _[_]ᵀᴹ _[_]ᵗᴹ
field
_∘ᴹ_ : Subᴹ Δᴹ Γᴹ γ → Subᴹ Θᴹ Δᴹ δ → Subᴹ Θᴹ Γᴹ (γ ∘ δ)
assocᴹ : γᴹ ∘ᴹ (δᴹ ∘ᴹ θᴹ) ≡[ ap-Subᴹ assoc ] (γᴹ ∘ᴹ δᴹ) ∘ᴹ θᴹ
idᴹ : Subᴹ Γᴹ Γᴹ id
idrᴹ : γᴹ ∘ᴹ idᴹ ≡[ ap-Subᴹ idr ] γᴹ
idlᴹ : idᴹ ∘ᴹ γᴹ ≡[ ap-Subᴹ idl ] γᴹ
_[_]ᵀᴹ : Tyᴹ Γᴹ i A → Subᴹ Δᴹ Γᴹ γ → Tyᴹ Δᴹ i (A [ γ ]ᵀ)
[]ᵀ-∘ᴹ : Aᴹ [ γᴹ ∘ᴹ δᴹ ]ᵀᴹ ≡[ ap-Tyᴹ []ᵀ-∘ ] Aᴹ [ γᴹ ]ᵀᴹ [ δᴹ ]ᵀᴹ
[]ᵀ-idᴹ : Aᴹ [ idᴹ ]ᵀᴹ ≡[ ap-Tyᴹ []ᵀ-id ] Aᴹ
_[_]ᵗᴹ :
Tmᴹ Γᴹ Aᴹ a → (γᴹ : Subᴹ Δᴹ Γᴹ γ) → Tmᴹ Δᴹ (Aᴹ [ γᴹ ]ᵀᴹ) (a [ γ ]ᵗ)
[]ᵗ-∘ᴹ :
aᴹ [ γᴹ ∘ᴹ δᴹ ]ᵗᴹ ≡[ ap-Tmᴹ []ᵀ-∘ []ᵀ-∘ᴹ []ᵗ-∘ ] aᴹ [ γᴹ ]ᵗᴹ [ δᴹ ]ᵗᴹ
[]ᵗ-idᴹ : aᴹ [ idᴹ ]ᵗᴹ ≡[ ap-Tmᴹ []ᵀ-id []ᵀ-idᴹ []ᵗ-id ] aᴹ
apᵈ-[]ᵀᴹᵣ :
(γ₀₁ : γ₀ ≡ γ₁) → γᴹ₀ ≡[ ap-Subᴹ γ₀₁ ] γᴹ₁ →
Aᴹ [ γᴹ₀ ]ᵀᴹ ≡[ ap-Tyᴹ (ap-[]ᵀᵣ γ₀₁) ] Aᴹ [ γᴹ₁ ]ᵀᴹ
apᵈ-[]ᵀᴹᵣ = Core-util.apᵈ-[]ᵀᴹᵣ _[_]ᵀᴹ
infixl 2 _▹ᴹ_
infixl 4 _,ᴹ_
field
◇ᴹ : Conᴹ ◇
εᴹ : Subᴹ Γᴹ ◇ᴹ ε
ε-∘ᴹ : εᴹ ∘ᴹ γᴹ ≡[ ap-Subᴹ ε-∘ ] εᴹ
◇-ηᴹ : idᴹ ≡[ ap-Subᴹ ◇-η ] εᴹ
_▹ᴹ_ : (Γᴹ : Conᴹ Γ) → Tyᴹ Γᴹ i A → Conᴹ (Γ ▹ A)
pᴹ : Subᴹ (Γᴹ ▹ᴹ Aᴹ) Γᴹ p
qᴹ : Tmᴹ (Γᴹ ▹ᴹ Aᴹ) (Aᴹ [ pᴹ ]ᵀᴹ) q
_,ᴹ_ :
(γᴹ : Subᴹ Δᴹ Γᴹ γ) → Tmᴹ Δᴹ (Aᴹ [ γᴹ ]ᵀᴹ) a →
Subᴹ Δᴹ (Γᴹ ▹ᴹ Aᴹ) (γ , a)
,-∘ᴹ :
(γᴹ ,ᴹ aᴹ) ∘ᴹ δᴹ ≡[ ap-Subᴹ ,-∘ ]
( γᴹ ∘ᴹ δᴹ ,ᴹ
coe (ap-Tmᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl) (aᴹ [ δᴹ ]ᵗᴹ))
▹-β₁ᴹ : pᴹ ∘ᴹ (γᴹ ,ᴹ aᴹ) ≡[ ap-Subᴹ ▹-β₁ ] γᴹ
▹-β₂ᴹ :
qᴹ [ γᴹ ,ᴹ aᴹ ]ᵗᴹ
≡[
ap-Tmᴹ
(sym []ᵀ-∘ ∙ ap-[]ᵀᵣ ▹-β₁)
(symᵈ []ᵀ-∘ᴹ ∙ᵈ apᵈ-[]ᵀᴹᵣ ▹-β₁ ▹-β₁ᴹ)
▹-β₂ ]
aᴹ
▹-ηᴹ :
idᴹ ≡[ ap-Subᴹ ▹-η ] (pᴹ ,ᴹ qᴹ) ∈ Subᴹ (Γᴹ ▹ᴹ Aᴹ) (Γᴹ ▹ᴹ Aᴹ) (p , q)
opaque
unfolding coe
apᵈ-∘ᴹᵣ :
(δ₀₁ : δ₀ ≡ δ₁) → δᴹ₀ ≡[ ap-Subᴹ δ₀₁ ] δᴹ₁ →
γᴹ ∘ᴹ δᴹ₀ ≡[ ap-Subᴹ (ap-∘ᵣ δ₀₁) ] γᴹ ∘ᴹ δᴹ₁
apᵈ-∘ᴹᵣ refl refl = refl
apᵈ-[]ᵀᴹ :
(A₀₁ : A₀ ≡ A₁) → Aᴹ₀ ≡[ ap-Tyᴹ A₀₁ ] Aᴹ₁ →
Aᴹ₀ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ (ap-[]ᵀ A₀₁) ] Aᴹ₁ [ γᴹ ]ᵀᴹ
apᵈ-[]ᵀᴹ refl refl = refl
apᵈ-[]ᵗᴹ :
(A₀₁ : A₀ ≡ A₁) (Aᴹ₀₁ : Aᴹ₀ ≡[ ap-Tyᴹ A₀₁ ] Aᴹ₁)
(a₀₁ : a₀ ≡[ ap-Tm A₀₁ ] a₁) → aᴹ₀ ≡[ ap-Tmᴹ A₀₁ Aᴹ₀₁ a₀₁ ] aᴹ₁ →
aᴹ₀ [ γᴹ ]ᵗᴹ
≡[ ap-Tmᴹ (ap-[]ᵀ A₀₁) (apᵈ-[]ᵀᴹ A₀₁ Aᴹ₀₁) (apᵈ-[]ᵗ A₀₁ a₀₁) ]
aᴹ₁ [ γᴹ ]ᵗᴹ
apᵈ-[]ᵗᴹ refl refl refl refl = refl
apᵈ-,ᴹ :
(γ₀₁ : γ₀ ≡ γ₁) (γᴹ₀₁ : γᴹ₀ ≡[ ap-Subᴹ γ₀₁ ] γᴹ₁)
(a₀₁ : a₀ ≡[ ap-Tm (ap-[]ᵀᵣ γ₀₁) ] a₁) →
aᴹ₀ ≡[ ap-Tmᴹ (ap-[]ᵀᵣ γ₀₁) (apᵈ-[]ᵀᴹᵣ γ₀₁ γᴹ₀₁) a₀₁ ] aᴹ₁ →
(γᴹ₀ ,ᴹ aᴹ₀) ≡[ ap-Subᴹ (ap-, γ₀₁ a₀₁) ] (γᴹ₁ ,ᴹ aᴹ₁)
apᵈ-,ᴹ refl refl refl refl = refl
_⁺ᴹ : (γᴹ : Subᴹ Δᴹ Γᴹ γ) → Subᴹ (Δᴹ ▹ᴹ Aᴹ [ γᴹ ]ᵀᴹ) (Γᴹ ▹ᴹ Aᴹ) (γ ⁺)
γᴹ ⁺ᴹ = γᴹ ∘ᴹ pᴹ ,ᴹ coe (ap-Tmᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl) qᴹ
⟨_⟩ᴹ : Tmᴹ Γᴹ Aᴹ a → Subᴹ Γᴹ (Γᴹ ▹ᴹ Aᴹ) ⟨ a ⟩
⟨ aᴹ ⟩ᴹ = idᴹ ,ᴹ coe (ap-Tmᴹ (sym []ᵀ-id) (symᵈ []ᵀ-idᴹ) refl) aᴹ
⟨⟩-∘ᴹ : ⟨ aᴹ ⟩ᴹ ∘ᴹ γᴹ ≡[ ap-Subᴹ ⟨⟩-∘ ] γᴹ ⁺ᴹ ∘ᴹ ⟨ aᴹ [ γᴹ ]ᵗᴹ ⟩ᴹ
⟨⟩-∘ᴹ =
,-∘ᴹ ∙ᵈ
apᵈ-,ᴹ
(idl ∙ sym idr ∙ ap-∘ᵣ (sym ▹-β₁) ∙ assoc)
(idlᴹ ∙ᵈ symᵈ idrᴹ ∙ᵈ apᵈ-∘ᴹᵣ (sym ▹-β₁) (symᵈ ▹-β₁ᴹ) ∙ᵈ assocᴹ)
(splitlr
( apᵈ-[]ᵗ []ᵀ-id (splitl reflᵈ) ∙ᵈ
symᵈ (merger ▹-β₂) ∙ᵈ
apᵈ-[]ᵗ (sym []ᵀ-∘) refl))
(splitlr
( apᵈ-[]ᵗᴹ []ᵀ-id []ᵀ-idᴹ (splitl reflᵈ) (splitl reflᵈ) ∙ᵈ
symᵈ (merger ▹-β₂ᴹ) ∙ᵈ
apᵈ-[]ᵗᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl refl)) ∙ᵈ
symᵈ ,-∘ᴹ
▹-η′ᴹ :
idᴹ ≡[ ap-Subᴹ ▹-η′ ]
pᴹ ⁺ᴹ ∘ᴹ ⟨ qᴹ ⟩ᴹ ∈ Subᴹ (Γᴹ ▹ᴹ Aᴹ) (Γᴹ ▹ᴹ Aᴹ) (p ⁺ ∘ ⟨ q ⟩)
▹-η′ᴹ =
▹-ηᴹ ∙ᵈ
apᵈ-,ᴹ
(sym idr ∙ ap-∘ᵣ (sym ▹-β₁) ∙ assoc)
(symᵈ idrᴹ ∙ᵈ apᵈ-∘ᴹᵣ (sym ▹-β₁) (symᵈ ▹-β₁ᴹ) ∙ᵈ assocᴹ)
(splitr (symᵈ (merger ▹-β₂) ∙ᵈ apᵈ-[]ᵗ (sym []ᵀ-∘) refl))
(splitr
( symᵈ (merger ▹-β₂ᴹ) ∙ᵈ
apᵈ-[]ᵗᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl refl)) ∙ᵈ
symᵈ ,-∘ᴹ
private
module Types-util
(core : Core)
(open Core core)
(Πᴹ :
∀ {Γ i A B} {Γᴹ : Conᴹ Γ} (Aᴹ : Tyᴹ Γᴹ i A) →
Tyᴹ (Γᴹ ▹ᴹ Aᴹ) i B → Tyᴹ Γᴹ i (Π A B))
where
opaque
unfolding coe
apᵈ-Πᴹ :
(B₀₁ : B₀ ≡ B₁) → Bᴹ₀ ≡[ ap-Tyᴹ B₀₁ ] Bᴹ₁ →
Πᴹ Aᴹ Bᴹ₀ ≡[ ap-Tyᴹ (ap-Π B₀₁) ] Πᴹ Aᴹ Bᴹ₁
apᵈ-Πᴹ refl refl = refl
record Types (core : Core) : Set where
no-eta-equality
open Core core
field
Uᴹ : (i : ℕ) → Tyᴹ Γᴹ (suc i) (U i)
U-[]ᴹ : Uᴹ i [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ U-[] ] Uᴹ i
Elᴹ : Tmᴹ Γᴹ (Uᴹ i) α → Tyᴹ Γᴹ i (El α)
El-[]ᴹ :
Elᴹ αᴹ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ El-[] ]
Elᴹ (coe (ap-Tmᴹ U-[] U-[]ᴹ refl) (αᴹ [ γᴹ ]ᵗᴹ))
cᴹ : Tyᴹ Γᴹ i A → Tmᴹ Γᴹ (Uᴹ i) (c A)
c-[]ᴹ : cᴹ Aᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ U-[] U-[]ᴹ c-[] ] cᴹ (Aᴹ [ γᴹ ]ᵀᴹ)
U-βᴹ : Elᴹ (cᴹ Aᴹ) ≡[ ap-Tyᴹ U-β ] Aᴹ
U-ηᴹ : αᴹ ≡[ ap-Tmᴹ refl reflᵈ (dep U-η) ] cᴹ (Elᴹ αᴹ)
field
Liftᴹ : Tyᴹ Γᴹ i A → Tyᴹ Γᴹ (suc i) (Lift A)
Lift-[]ᴹ : Liftᴹ Aᴹ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ Lift-[] ] Liftᴹ (Aᴹ [ γᴹ ]ᵀᴹ)
lowerᴹ : Tmᴹ Γᴹ (Liftᴹ Aᴹ) a → Tmᴹ Γᴹ Aᴹ (lower a)
lower-[]ᴹ :
lowerᴹ aᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ refl reflᵈ (dep lower-[]) ]
lowerᴹ (coe (ap-Tmᴹ Lift-[] Lift-[]ᴹ refl) (aᴹ [ γᴹ ]ᵗᴹ))
liftᴹ : Tmᴹ Γᴹ Aᴹ a → Tmᴹ Γᴹ (Liftᴹ Aᴹ) (lift a)
lift-[]ᴹ :
liftᴹ aᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ Lift-[] Lift-[]ᴹ lift-[] ]
liftᴹ (aᴹ [ γᴹ ]ᵗᴹ)
Lift-βᴹ : lowerᴹ (liftᴹ aᴹ) ≡[ ap-Tmᴹ refl reflᵈ (dep Lift-β) ] aᴹ
Lift-ηᴹ : liftᴹ (lowerᴹ aᴹ) ≡[ ap-Tmᴹ refl reflᵈ (dep Lift-η) ] aᴹ
field
Πᴹ : (Aᴹ : Tyᴹ Γᴹ i A) → Tyᴹ (Γᴹ ▹ᴹ Aᴹ) i B → Tyᴹ Γᴹ i (Π A B)
Π-[]ᴹ :
Πᴹ Aᴹ Bᴹ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ Π-[] ] Πᴹ (Aᴹ [ γᴹ ]ᵀᴹ) (Bᴹ [ γᴹ ⁺ᴹ ]ᵀᴹ)
appᴹ :
Tmᴹ Γᴹ (Πᴹ Aᴹ Bᴹ) f →
(aᴹ : Tmᴹ Γᴹ Aᴹ a) → Tmᴹ Γᴹ (Bᴹ [ ⟨ aᴹ ⟩ᴹ ]ᵀᴹ) (app f a)
app-[]ᴹ :
appᴹ fᴹ aᴹ [ γᴹ ]ᵗᴹ
≡[
ap-Tmᴹ
(sym []ᵀ-∘ ∙ ap-[]ᵀᵣ ⟨⟩-∘ ∙ []ᵀ-∘)
(symᵈ []ᵀ-∘ᴹ ∙ᵈ apᵈ-[]ᵀᴹᵣ ⟨⟩-∘ ⟨⟩-∘ᴹ ∙ᵈ []ᵀ-∘ᴹ)
app-[] ]
appᴹ (coe (ap-Tmᴹ Π-[] Π-[]ᴹ refl) (fᴹ [ γᴹ ]ᵗᴹ)) (aᴹ [ γᴹ ]ᵗᴹ)
lamᴹ : Tmᴹ (Γᴹ ▹ᴹ Aᴹ) Bᴹ b → Tmᴹ Γᴹ (Πᴹ Aᴹ Bᴹ) (lam b)
lam-[]ᴹ :
lamᴹ bᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ Π-[] Π-[]ᴹ lam-[] ] lamᴹ (bᴹ [ γᴹ ⁺ᴹ ]ᵗᴹ)
apᵈ-Πᴹ :
(B₀₁ : B₀ ≡ B₁) → Bᴹ₀ ≡[ ap-Tyᴹ B₀₁ ] Bᴹ₁ →
Πᴹ Aᴹ Bᴹ₀ ≡[ ap-Tyᴹ (ap-Π B₀₁) ] Πᴹ Aᴹ Bᴹ₁
apᵈ-Πᴹ = Types-util.apᵈ-Πᴹ core Πᴹ
field
Π-βᴹ :
appᴹ (lamᴹ bᴹ) aᴹ ≡[ ap-Tmᴹ refl reflᵈ (dep Π-β) ] bᴹ [ ⟨ aᴹ ⟩ᴹ ]ᵗᴹ
Π-ηᴹ :
fᴹ ≡[
ap-Tmᴹ
(ap-Π (sym []ᵀ-id ∙ ap-[]ᵀᵣ ▹-η′ ∙ []ᵀ-∘))
(apᵈ-Πᴹ
(sym []ᵀ-id ∙ ap-[]ᵀᵣ ▹-η′ ∙ []ᵀ-∘)
(symᵈ []ᵀ-idᴹ ∙ᵈ apᵈ-[]ᵀᴹᵣ ▹-η′ ▹-η′ᴹ ∙ᵈ []ᵀ-∘ᴹ))
Π-η ]
lamᴹ (appᴹ (coe (ap-Tmᴹ Π-[] Π-[]ᴹ refl) (fᴹ [ pᴹ ]ᵗᴹ)) qᴹ)
open Sorts public
open Core public
open Types public
record DModel : Set₁ where
no-eta-equality
open DM using (Sorts; Core; Types)
field
sorts : Sorts
core : Core sorts
types : Types sorts core
open Sorts sorts public
open Core core public
open Types types public
private variable
Γᴹ Γᴹ₀ Γᴹ₁ Δᴹ₀ Δᴹ₁ : Conᴹ Γ
Aᴹ₀ Aᴹ₁ : Tyᴹ Γᴹ i A
opaque
unfolding coe
ap-Conᴹ : Γ₀ ≡ Γ₁ → Conᴹ Γ₀ ≡ Conᴹ Γ₁
ap-Conᴹ refl = refl
ap-Subᴹ₅ :
(Δ₀₁ : Δ₀ ≡ Δ₁) → Δᴹ₀ ≡[ ap-Conᴹ Δ₀₁ ] Δᴹ₁ →
(Γ₀₁ : Γ₀ ≡ Γ₁) → Γᴹ₀ ≡[ ap-Conᴹ Γ₀₁ ] Γᴹ₁ →
γ₀ ≡[ ap-Sub Δ₀₁ Γ₀₁ ] γ₁ → Subᴹ Δᴹ₀ Γᴹ₀ γ₀ ≡ Subᴹ Δᴹ₁ Γᴹ₁ γ₁
ap-Subᴹ₅ refl refl refl refl refl = refl
ap-Tyᴹ₄ :
(Γ₀₁ : Γ₀ ≡ Γ₁) → Γᴹ₀ ≡[ ap-Conᴹ Γ₀₁ ] Γᴹ₁ → (i₀₁ : i₀ ≡ i₁) →
A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁ → Tyᴹ Γᴹ₀ i₀ A₀ ≡ Tyᴹ Γᴹ₁ i₁ A₁
ap-Tyᴹ₄ refl refl refl refl = refl
ap-Tmᴹ₆ :
(Γ₀₁ : Γ₀ ≡ Γ₁) (Γᴹ₀₁ : Γᴹ₀ ≡[ ap-Conᴹ Γ₀₁ ] Γᴹ₁) (i₀₁ : i₀ ≡ i₁) →
(A₀₁ : A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁) →
Aᴹ₀ ≡[ ap-Tyᴹ₄ Γ₀₁ Γᴹ₀₁ i₀₁ A₀₁ ] Aᴹ₁ →
a₀ ≡[ ap-Tm₃ Γ₀₁ i₀₁ A₀₁ ] a₁ → Tmᴹ Γᴹ₀ Aᴹ₀ a₀ ≡ Tmᴹ Γᴹ₁ Aᴹ₁ a₁
ap-Tmᴹ₆ refl refl refl refl refl refl = refl
module Ind (M : DModel) where
open DModel M
⟦_⟧ᶜ : (Γ : Con) → Conᴹ Γ
postulate
⟦_⟧ᵀ : (A : Ty Γ i) → Tyᴹ ⟦ Γ ⟧ᶜ i A
⟦ ◇ ⟧ᶜ = ◇ᴹ
⟦ Γ ▹ A ⟧ᶜ = ⟦ Γ ⟧ᶜ ▹ᴹ ⟦ A ⟧ᵀ
opaque
unfolding coe
apᵈ-⟦⟧ᶜ : (Γ₀₁ : Γ₀ ≡ Γ₁) → ⟦ Γ₀ ⟧ᶜ ≡[ ap-Conᴹ Γ₀₁ ] ⟦ Γ₁ ⟧ᶜ
apᵈ-⟦⟧ᶜ refl = refl
apᵈ-⟦⟧ᵀ :
(Γ₀₁ : Γ₀ ≡ Γ₁) (i₀₁ : i₀ ≡ i₁) (A₀₁ : A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁) →
⟦ A₀ ⟧ᵀ ≡[ ap-Tyᴹ₄ Γ₀₁ (apᵈ-⟦⟧ᶜ Γ₀₁) i₀₁ A₀₁ ] ⟦ A₁ ⟧ᵀ
apᵈ-⟦⟧ᵀ refl refl refl = refl
postulate
⟦⟧ᵀ-coe :
{e : Ty Γ₀ i₀ ≡ Ty Γ₁ i₁} →
⟦ coe e A₀ ⟧ᵀ ↝
coe
(ap-Tyᴹ₄ (Ty-inj-Γ e) (apᵈ-⟦⟧ᶜ (Ty-inj-Γ e)) (Ty-inj-i e) refl)
⟦ A₀ ⟧ᵀ
{-# REWRITE ⟦⟧ᵀ-coe #-}
postulate
⟦_⟧ˢ : (γ : Sub Δ Γ) → Subᴹ ⟦ Δ ⟧ᶜ ⟦ Γ ⟧ᶜ γ
⟦⟧ˢ-coe :
{e : Sub Δ₀ Γ₀ ≡ Sub Δ₁ Γ₁} →
⟦ coe e γ₀ ⟧ˢ ↝
coe
(ap-Subᴹ₅
(Sub-inj-Δ e)
(apᵈ-⟦⟧ᶜ (Sub-inj-Δ e))
(Sub-inj-Γ e)
(apᵈ-⟦⟧ᶜ (Sub-inj-Γ e))
refl)
⟦ γ₀ ⟧ˢ
{-# REWRITE ⟦⟧ˢ-coe #-}
⟦⟧-∘ : ⟦ γ ∘ δ ⟧ˢ ↝ ⟦ γ ⟧ˢ ∘ᴹ ⟦ δ ⟧ˢ
{-# REWRITE ⟦⟧-∘ #-}
⟦⟧-id : ⟦ id ⟧ˢ ↝ idᴹ ∈ Subᴹ ⟦ Γ ⟧ᶜ ⟦ Γ ⟧ᶜ id
{-# REWRITE ⟦⟧-id #-}
postulate
⟦⟧-[]ᵀ : ⟦ A [ γ ]ᵀ ⟧ᵀ ↝ ⟦ A ⟧ᵀ [ ⟦ γ ⟧ˢ ]ᵀᴹ
{-# REWRITE ⟦⟧-[]ᵀ #-}
postulate
⟦_⟧ᵗ : (a : Tm Γ A) → Tmᴹ ⟦ Γ ⟧ᶜ ⟦ A ⟧ᵀ a
⟦⟧ᵗ-coe :
{e : Tm Γ₀ A₀ ≡ Tm Γ₁ A₁} →
⟦ coe e a₀ ⟧ᵗ ↝
coe
(ap-Tmᴹ₆
(Tm-inj-Γ e)
(apᵈ-⟦⟧ᶜ (Tm-inj-Γ e))
(Tm-inj-i e)
(Tm-inj-A e)
(apᵈ-⟦⟧ᵀ (Tm-inj-Γ e) (Tm-inj-i e) (Tm-inj-A e))
refl)
⟦ a₀ ⟧ᵗ
{-# REWRITE ⟦⟧ᵗ-coe #-}
⟦⟧-[]ᵗ : ⟦ a [ γ ]ᵗ ⟧ᵗ ↝ ⟦ a ⟧ᵗ [ ⟦ γ ⟧ˢ ]ᵗᴹ
{-# REWRITE ⟦⟧-[]ᵗ #-}
postulate
⟦⟧-ε : ⟦ ε ⟧ˢ ↝ εᴹ ∈ Subᴹ ⟦ Γ ⟧ᶜ ⟦ ◇ ⟧ᶜ ε
{-# REWRITE ⟦⟧-ε #-}
⟦⟧-p : ⟦ p ⟧ˢ ↝ pᴹ ∈ Subᴹ ⟦ Γ ▹ A ⟧ᶜ ⟦ Γ ⟧ᶜ p
{-# REWRITE ⟦⟧-p #-}
⟦⟧-q : ⟦ q ⟧ᵗ ↝ qᴹ ∈ Tmᴹ ⟦ Γ ▹ A ⟧ᶜ ⟦ A [ p ]ᵀ ⟧ᵀ q
{-# REWRITE ⟦⟧-q #-}
⟦⟧-, : ⟦ γ , a ⟧ˢ ↝ (⟦ γ ⟧ˢ ,ᴹ ⟦ a ⟧ᵗ)
{-# REWRITE ⟦⟧-, #-}
postulate
⟦⟧-U : ⟦ U i ⟧ᵀ ↝ Uᴹ i ∈ Tyᴹ ⟦ Γ ⟧ᶜ (suc i) (U i)
{-# REWRITE ⟦⟧-U #-}
⟦⟧-El : ⟦ El α ⟧ᵀ ↝ Elᴹ ⟦ α ⟧ᵗ
{-# REWRITE ⟦⟧-El #-}
⟦⟧-c : ⟦ c A ⟧ᵗ ↝ cᴹ ⟦ A ⟧ᵀ
{-# REWRITE ⟦⟧-c #-}
⟦⟧-Lift : ⟦ Lift A ⟧ᵀ ↝ Liftᴹ ⟦ A ⟧ᵀ
{-# REWRITE ⟦⟧-Lift #-}
⟦⟧-lower : ⟦ lower a ⟧ᵗ ↝ lowerᴹ ⟦ a ⟧ᵗ
{-# REWRITE ⟦⟧-lower #-}
⟦⟧-lift : ⟦ lift a ⟧ᵗ ↝ liftᴹ ⟦ a ⟧ᵗ
{-# REWRITE ⟦⟧-lift #-}
⟦⟧-Π : ⟦ Π A B ⟧ᵀ ↝ Πᴹ ⟦ A ⟧ᵀ ⟦ B ⟧ᵀ
{-# REWRITE ⟦⟧-Π #-}
⟦⟧-app : ⟦ app f a ⟧ᵗ ↝ appᴹ ⟦ f ⟧ᵗ ⟦ a ⟧ᵗ
{-# REWRITE ⟦⟧-app #-}
⟦⟧-lam : ⟦ lam b ⟧ᵗ ↝ lamᴹ ⟦ b ⟧ᵗ
{-# REWRITE ⟦⟧-lam #-}