{-# OPTIONS
  --without-K
  --prop
  --rewriting
  --confluence-check
#-}

module TT.CwF.Ind where

open import TT.Lib
open import TT.CwF.Syntax

private variable
  i i₀ i₁ : 
  Γ Γ₀ Γ₁ Δ Δ₀ Δ₁ : Con
  γ γ₀ γ₁ δ δ₀ δ₁ : Sub Δ Γ
  A A₀ A₁ B B₀ B₁ : Ty Γ i
  a a₀ a₁ b f α : Tm Γ A

module DM where
  record Sorts : Set₁ where
    no-eta-equality
    field
      Conᴹ : Con  Set
      Subᴹ : Conᴹ Δ  Conᴹ Γ  Sub Δ Γ  Set
      Tyᴹ : Conᴹ Γ  (i : )  Ty Γ i  Set
      Tmᴹ : (Γᴹ : Conᴹ Γ)  Tyᴹ Γᴹ i A  Tm Γ A  Set

    private variable
      Γᴹ Δᴹ : Conᴹ Γ
      Aᴹ₀ Aᴹ₁ : Tyᴹ Γᴹ i A

    opaque
      unfolding coe

      ap-Subᴹ : γ₀  γ₁  Subᴹ Δᴹ Γᴹ γ₀  Subᴹ Δᴹ Γᴹ γ₁
      ap-Subᴹ refl = refl

      ap-Tyᴹ : A₀  A₁  Tyᴹ Γᴹ i A₀  Tyᴹ Γᴹ i A₁
      ap-Tyᴹ refl = refl

      ap-Tmᴹ :
        (A₀₁ : A₀  A₁)  Aᴹ₀ ≡[ ap-Tyᴹ A₀₁ ] Aᴹ₁ 
        a₀ ≡[ ap-Tm A₀₁ ] a₁  Tmᴹ Γᴹ Aᴹ₀ a₀  Tmᴹ Γᴹ Aᴹ₁ a₁
      ap-Tmᴹ refl refl refl = refl

  module _ (sorts : Sorts) where
    open Sorts sorts

    private variable
      Γᴹ Δᴹ Θᴹ : Conᴹ Γ
      γᴹ γᴹ₀ γᴹ₁ δᴹ δᴹ₀ δᴹ₁ θᴹ : Subᴹ Δᴹ Γᴹ γ
      Aᴹ Aᴹ₀ Aᴹ₁ Bᴹ Bᴹ₀ Bᴹ₁ : Tyᴹ Γᴹ i A
      aᴹ aᴹ₀ aᴹ₁ bᴹ fᴹ αᴹ : Tmᴹ Γᴹ Aᴹ a

    private
      module Core-util
        (_[_]ᵀᴹ :
           {Γ i A Δ γ} {Γᴹ : Conᴹ Γ} {Δᴹ : Conᴹ Δ} 
          Tyᴹ Γᴹ i A  Subᴹ Δᴹ Γᴹ γ  Tyᴹ Δᴹ i (A [ γ ]ᵀ))
        where
        opaque
          unfolding coe

          apᵈ-[]ᵀᴹᵣ :
            (γ₀₁ : γ₀  γ₁)  γᴹ₀ ≡[ ap-Subᴹ γ₀₁ ] γᴹ₁ 
            Aᴹ [ γᴹ₀ ]ᵀᴹ ≡[ ap-Tyᴹ (ap-[]ᵀᵣ γ₀₁) ] Aᴹ [ γᴹ₁ ]ᵀᴹ
          apᵈ-[]ᵀᴹᵣ refl refl = refl

    record Core : Set where
      no-eta-equality

      infixl 9 _∘ᴹ_ _[_]ᵀᴹ _[_]ᵗᴹ
      field
        _∘ᴹ_ : Subᴹ Δᴹ Γᴹ γ  Subᴹ Θᴹ Δᴹ δ  Subᴹ Θᴹ Γᴹ (γ  δ)
        assocᴹ : γᴹ ∘ᴹ (δᴹ ∘ᴹ θᴹ) ≡[ ap-Subᴹ assoc ] (γᴹ ∘ᴹ δᴹ) ∘ᴹ θᴹ

        idᴹ : Subᴹ Γᴹ Γᴹ id
        idrᴹ : γᴹ ∘ᴹ idᴹ ≡[ ap-Subᴹ idr ] γᴹ
        idlᴹ : idᴹ ∘ᴹ γᴹ ≡[ ap-Subᴹ idl ] γᴹ

        _[_]ᵀᴹ : Tyᴹ Γᴹ i A  Subᴹ Δᴹ Γᴹ γ  Tyᴹ Δᴹ i (A [ γ ]ᵀ)
        []ᵀ-∘ᴹ : Aᴹ [ γᴹ ∘ᴹ δᴹ ]ᵀᴹ ≡[ ap-Tyᴹ []ᵀ-∘ ] Aᴹ [ γᴹ ]ᵀᴹ [ δᴹ ]ᵀᴹ
        []ᵀ-idᴹ : Aᴹ [ idᴹ ]ᵀᴹ ≡[ ap-Tyᴹ []ᵀ-id ] Aᴹ

        _[_]ᵗᴹ :
          Tmᴹ Γᴹ Aᴹ a  (γᴹ : Subᴹ Δᴹ Γᴹ γ)  Tmᴹ Δᴹ (Aᴹ [ γᴹ ]ᵀᴹ) (a [ γ ]ᵗ)
        []ᵗ-∘ᴹ :
          aᴹ [ γᴹ ∘ᴹ δᴹ ]ᵗᴹ ≡[ ap-Tmᴹ []ᵀ-∘ []ᵀ-∘ᴹ []ᵗ-∘ ] aᴹ [ γᴹ ]ᵗᴹ [ δᴹ ]ᵗᴹ
        []ᵗ-idᴹ : aᴹ [ idᴹ ]ᵗᴹ ≡[ ap-Tmᴹ []ᵀ-id []ᵀ-idᴹ []ᵗ-id ] aᴹ

      apᵈ-[]ᵀᴹᵣ :
        (γ₀₁ : γ₀  γ₁)  γᴹ₀ ≡[ ap-Subᴹ γ₀₁ ] γᴹ₁ 
        Aᴹ [ γᴹ₀ ]ᵀᴹ ≡[ ap-Tyᴹ (ap-[]ᵀᵣ γ₀₁) ] Aᴹ [ γᴹ₁ ]ᵀᴹ
      apᵈ-[]ᵀᴹᵣ = Core-util.apᵈ-[]ᵀᴹᵣ _[_]ᵀᴹ

      infixl 2 _▹ᴹ_
      infixl 4 _,ᴹ_
      field
        ◇ᴹ : Conᴹ 
        εᴹ : Subᴹ Γᴹ ◇ᴹ ε
        ε-∘ᴹ : εᴹ ∘ᴹ γᴹ ≡[ ap-Subᴹ ε-∘ ] εᴹ
        ◇-ηᴹ : idᴹ ≡[ ap-Subᴹ ◇-η ] εᴹ

        _▹ᴹ_ : (Γᴹ : Conᴹ Γ)  Tyᴹ Γᴹ i A  Conᴹ (Γ  A)
        pᴹ : Subᴹ (Γᴹ ▹ᴹ Aᴹ) Γᴹ p
        qᴹ : Tmᴹ (Γᴹ ▹ᴹ Aᴹ) (Aᴹ [ pᴹ ]ᵀᴹ) q

        _,ᴹ_ :
          (γᴹ : Subᴹ Δᴹ Γᴹ γ)  Tmᴹ Δᴹ (Aᴹ [ γᴹ ]ᵀᴹ) a 
          Subᴹ Δᴹ (Γᴹ ▹ᴹ Aᴹ) (γ , a)
        ,-∘ᴹ :
          (γᴹ ,ᴹ aᴹ) ∘ᴹ δᴹ ≡[ ap-Subᴹ ,-∘ ]
          ( γᴹ ∘ᴹ δᴹ ,ᴹ
            coe (ap-Tmᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl) (aᴹ [ δᴹ ]ᵗᴹ))

        ▹-β₁ᴹ : pᴹ ∘ᴹ (γᴹ ,ᴹ aᴹ) ≡[ ap-Subᴹ ▹-β₁ ] γᴹ
        ▹-β₂ᴹ :
          qᴹ [ γᴹ ,ᴹ aᴹ ]ᵗᴹ
            ≡[
              ap-Tmᴹ
                (sym []ᵀ-∘  ap-[]ᵀᵣ ▹-β₁)
                (symᵈ []ᵀ-∘ᴹ ∙ᵈ apᵈ-[]ᵀᴹᵣ ▹-β₁ ▹-β₁ᴹ)
                ▹-β₂ ]
          aᴹ
        ▹-ηᴹ :
          idᴹ ≡[ ap-Subᴹ ▹-η ] (pᴹ ,ᴹ qᴹ)  Subᴹ (Γᴹ ▹ᴹ Aᴹ) (Γᴹ ▹ᴹ Aᴹ) (p , q)

      opaque
        unfolding coe

        apᵈ-∘ᴹᵣ :
          (δ₀₁ : δ₀  δ₁)  δᴹ₀ ≡[ ap-Subᴹ δ₀₁ ] δᴹ₁ 
          γᴹ ∘ᴹ δᴹ₀ ≡[ ap-Subᴹ (ap-∘ᵣ δ₀₁) ] γᴹ ∘ᴹ δᴹ₁
        apᵈ-∘ᴹᵣ refl refl = refl

        apᵈ-[]ᵀᴹ :
          (A₀₁ : A₀  A₁)  Aᴹ₀ ≡[ ap-Tyᴹ A₀₁ ] Aᴹ₁ 
          Aᴹ₀ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ (ap-[]ᵀ A₀₁) ] Aᴹ₁ [ γᴹ ]ᵀᴹ
        apᵈ-[]ᵀᴹ refl refl = refl

        apᵈ-[]ᵗᴹ :
          (A₀₁ : A₀  A₁) (Aᴹ₀₁ : Aᴹ₀ ≡[ ap-Tyᴹ A₀₁ ] Aᴹ₁)
          (a₀₁ : a₀ ≡[ ap-Tm A₀₁ ] a₁)  aᴹ₀ ≡[ ap-Tmᴹ A₀₁ Aᴹ₀₁ a₀₁ ] aᴹ₁ 
          aᴹ₀ [ γᴹ ]ᵗᴹ
            ≡[ ap-Tmᴹ (ap-[]ᵀ A₀₁) (apᵈ-[]ᵀᴹ A₀₁ Aᴹ₀₁) (apᵈ-[]ᵗ A₀₁ a₀₁) ]
          aᴹ₁ [ γᴹ ]ᵗᴹ
        apᵈ-[]ᵗᴹ refl refl refl refl = refl

        apᵈ-,ᴹ :
          (γ₀₁ : γ₀  γ₁) (γᴹ₀₁ : γᴹ₀ ≡[ ap-Subᴹ γ₀₁ ] γᴹ₁)
          (a₀₁ : a₀ ≡[ ap-Tm (ap-[]ᵀᵣ γ₀₁) ] a₁) 
          aᴹ₀ ≡[ ap-Tmᴹ (ap-[]ᵀᵣ γ₀₁) (apᵈ-[]ᵀᴹᵣ γ₀₁ γᴹ₀₁) a₀₁ ] aᴹ₁ 
          (γᴹ₀ ,ᴹ aᴹ₀) ≡[ ap-Subᴹ (ap-, γ₀₁ a₀₁) ] (γᴹ₁ ,ᴹ aᴹ₁)
        apᵈ-,ᴹ refl refl refl refl = refl

      _⁺ᴹ : (γᴹ : Subᴹ Δᴹ Γᴹ γ)  Subᴹ (Δᴹ ▹ᴹ Aᴹ [ γᴹ ]ᵀᴹ) (Γᴹ ▹ᴹ Aᴹ) (γ )
      γᴹ ⁺ᴹ = γᴹ ∘ᴹ pᴹ ,ᴹ coe (ap-Tmᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl) qᴹ

      ⟨_⟩ᴹ : Tmᴹ Γᴹ Aᴹ a  Subᴹ Γᴹ (Γᴹ ▹ᴹ Aᴹ)  a 
       aᴹ ⟩ᴹ = idᴹ ,ᴹ coe (ap-Tmᴹ (sym []ᵀ-id) (symᵈ []ᵀ-idᴹ) refl) aᴹ

      ⟨⟩-∘ᴹ :  aᴹ ⟩ᴹ ∘ᴹ γᴹ ≡[ ap-Subᴹ ⟨⟩-∘ ] γᴹ ⁺ᴹ ∘ᴹ  aᴹ [ γᴹ ]ᵗᴹ ⟩ᴹ
      ⟨⟩-∘ᴹ =
        ,-∘ᴹ ∙ᵈ
        apᵈ-,ᴹ
          (idl  sym idr  ap-∘ᵣ (sym ▹-β₁)  assoc)
          (idlᴹ ∙ᵈ symᵈ idrᴹ ∙ᵈ apᵈ-∘ᴹᵣ (sym ▹-β₁) (symᵈ ▹-β₁ᴹ) ∙ᵈ assocᴹ)
          (splitlr
            ( apᵈ-[]ᵗ []ᵀ-id (splitl reflᵈ) ∙ᵈ
              symᵈ (merger ▹-β₂) ∙ᵈ
              apᵈ-[]ᵗ (sym []ᵀ-∘) refl))
          (splitlr
            ( apᵈ-[]ᵗᴹ []ᵀ-id []ᵀ-idᴹ (splitl reflᵈ) (splitl reflᵈ) ∙ᵈ
              symᵈ (merger ▹-β₂ᴹ) ∙ᵈ
              apᵈ-[]ᵗᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl refl)) ∙ᵈ
        symᵈ ,-∘ᴹ

      ▹-η′ᴹ :
        idᴹ ≡[ ap-Subᴹ ▹-η′ ]
        pᴹ ⁺ᴹ ∘ᴹ  qᴹ ⟩ᴹ  Subᴹ (Γᴹ ▹ᴹ Aᴹ) (Γᴹ ▹ᴹ Aᴹ) (p    q )
      ▹-η′ᴹ =
        ▹-ηᴹ ∙ᵈ
        apᵈ-,ᴹ
          (sym idr  ap-∘ᵣ (sym ▹-β₁)  assoc)
          (symᵈ idrᴹ ∙ᵈ apᵈ-∘ᴹᵣ (sym ▹-β₁) (symᵈ ▹-β₁ᴹ) ∙ᵈ assocᴹ)
          (splitr (symᵈ (merger ▹-β₂) ∙ᵈ apᵈ-[]ᵗ (sym []ᵀ-∘) refl))
          (splitr
            ( symᵈ (merger ▹-β₂ᴹ) ∙ᵈ
              apᵈ-[]ᵗᴹ (sym []ᵀ-∘) (symᵈ []ᵀ-∘ᴹ) refl refl)) ∙ᵈ
        symᵈ ,-∘ᴹ

    private
      module Types-util
        (core : Core)
        (open Core core)
        (Πᴹ :
           {Γ i A B} {Γᴹ : Conᴹ Γ} (Aᴹ : Tyᴹ Γᴹ i A) 
          Tyᴹ (Γᴹ ▹ᴹ Aᴹ) i B  Tyᴹ Γᴹ i (Π A B))
        where
        opaque
          unfolding coe

          apᵈ-Πᴹ :
            (B₀₁ : B₀  B₁)  Bᴹ₀ ≡[ ap-Tyᴹ B₀₁ ] Bᴹ₁ 
            Πᴹ Aᴹ Bᴹ₀ ≡[ ap-Tyᴹ (ap-Π B₀₁) ] Πᴹ Aᴹ Bᴹ₁
          apᵈ-Πᴹ refl refl = refl

    record Types (core : Core) : Set where
      no-eta-equality
      open Core core

      field
        Uᴹ : (i : )  Tyᴹ Γᴹ (suc i) (U i)
        U-[]ᴹ : Uᴹ i [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ U-[] ] Uᴹ i

        Elᴹ : Tmᴹ Γᴹ (Uᴹ i) α  Tyᴹ Γᴹ i (El α)
        El-[]ᴹ :
          Elᴹ αᴹ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ El-[] ]
          Elᴹ (coe (ap-Tmᴹ U-[] U-[]ᴹ refl) (αᴹ [ γᴹ ]ᵗᴹ))

        cᴹ : Tyᴹ Γᴹ i A  Tmᴹ Γᴹ (Uᴹ i) (c A)
        c-[]ᴹ : cᴹ Aᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ U-[] U-[]ᴹ c-[] ] cᴹ (Aᴹ [ γᴹ ]ᵀᴹ)

        U-βᴹ : Elᴹ (cᴹ Aᴹ) ≡[ ap-Tyᴹ U-β ] Aᴹ
        U-ηᴹ : αᴹ ≡[ ap-Tmᴹ refl reflᵈ (dep U-η) ] cᴹ (Elᴹ αᴹ)

      field
        Liftᴹ : Tyᴹ Γᴹ i A  Tyᴹ Γᴹ (suc i) (Lift A)
        Lift-[]ᴹ : Liftᴹ Aᴹ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ Lift-[] ] Liftᴹ (Aᴹ [ γᴹ ]ᵀᴹ)

        lowerᴹ : Tmᴹ Γᴹ (Liftᴹ Aᴹ) a  Tmᴹ Γᴹ Aᴹ (lower a)
        lower-[]ᴹ :
          lowerᴹ aᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ refl reflᵈ (dep lower-[]) ]
          lowerᴹ (coe (ap-Tmᴹ Lift-[] Lift-[]ᴹ refl) (aᴹ [ γᴹ ]ᵗᴹ))

        liftᴹ : Tmᴹ Γᴹ Aᴹ a  Tmᴹ Γᴹ (Liftᴹ Aᴹ) (lift a)
        lift-[]ᴹ :
          liftᴹ aᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ Lift-[] Lift-[]ᴹ lift-[] ]
          liftᴹ (aᴹ [ γᴹ ]ᵗᴹ)

        Lift-βᴹ : lowerᴹ (liftᴹ aᴹ) ≡[ ap-Tmᴹ refl reflᵈ (dep Lift-β) ] aᴹ
        Lift-ηᴹ : liftᴹ (lowerᴹ aᴹ) ≡[ ap-Tmᴹ refl reflᵈ (dep Lift-η) ] aᴹ

      field
        Πᴹ : (Aᴹ : Tyᴹ Γᴹ i A)  Tyᴹ (Γᴹ ▹ᴹ Aᴹ) i B  Tyᴹ Γᴹ i (Π A B)
        Π-[]ᴹ :
          Πᴹ Aᴹ Bᴹ [ γᴹ ]ᵀᴹ ≡[ ap-Tyᴹ Π-[] ] Πᴹ (Aᴹ [ γᴹ ]ᵀᴹ) (Bᴹ [ γᴹ ⁺ᴹ ]ᵀᴹ)

        appᴹ :
          Tmᴹ Γᴹ (Πᴹ Aᴹ Bᴹ) f 
          (aᴹ : Tmᴹ Γᴹ Aᴹ a)  Tmᴹ Γᴹ (Bᴹ [  aᴹ ⟩ᴹ ]ᵀᴹ) (app f a)
        app-[]ᴹ :
          appᴹ fᴹ aᴹ [ γᴹ ]ᵗᴹ
            ≡[
              ap-Tmᴹ
                (sym []ᵀ-∘  ap-[]ᵀᵣ ⟨⟩-∘  []ᵀ-∘)
                (symᵈ []ᵀ-∘ᴹ ∙ᵈ apᵈ-[]ᵀᴹᵣ ⟨⟩-∘ ⟨⟩-∘ᴹ ∙ᵈ []ᵀ-∘ᴹ)
                app-[] ]
          appᴹ (coe (ap-Tmᴹ Π-[] Π-[]ᴹ refl) (fᴹ [ γᴹ ]ᵗᴹ)) (aᴹ [ γᴹ ]ᵗᴹ)

        lamᴹ : Tmᴹ (Γᴹ ▹ᴹ Aᴹ) Bᴹ b  Tmᴹ Γᴹ (Πᴹ Aᴹ Bᴹ) (lam b)
        lam-[]ᴹ :
          lamᴹ bᴹ [ γᴹ ]ᵗᴹ ≡[ ap-Tmᴹ Π-[] Π-[]ᴹ lam-[] ] lamᴹ (bᴹ [ γᴹ ⁺ᴹ ]ᵗᴹ)

      apᵈ-Πᴹ :
        (B₀₁ : B₀  B₁)  Bᴹ₀ ≡[ ap-Tyᴹ B₀₁ ] Bᴹ₁ 
        Πᴹ Aᴹ Bᴹ₀ ≡[ ap-Tyᴹ (ap-Π B₀₁) ] Πᴹ Aᴹ Bᴹ₁
      apᵈ-Πᴹ = Types-util.apᵈ-Πᴹ core Πᴹ

      field
        Π-βᴹ :
          appᴹ (lamᴹ bᴹ) aᴹ ≡[ ap-Tmᴹ refl reflᵈ (dep Π-β) ] bᴹ [  aᴹ ⟩ᴹ ]ᵗᴹ
        Π-ηᴹ :
          fᴹ ≡[
            ap-Tmᴹ
              (ap-Π (sym []ᵀ-id  ap-[]ᵀᵣ ▹-η′  []ᵀ-∘))
              (apᵈ-Πᴹ
                (sym []ᵀ-id  ap-[]ᵀᵣ ▹-η′  []ᵀ-∘)
                (symᵈ []ᵀ-idᴹ ∙ᵈ apᵈ-[]ᵀᴹᵣ ▹-η′ ▹-η′ᴹ ∙ᵈ []ᵀ-∘ᴹ))
              Π-η ]
          lamᴹ (appᴹ (coe (ap-Tmᴹ Π-[] Π-[]ᴹ refl) (fᴹ [ pᴹ ]ᵗᴹ)) qᴹ)

  open Sorts public
  open Core public
  open Types public

record DModel : Set₁ where
  no-eta-equality
  open DM using (Sorts; Core; Types)

  field
    sorts : Sorts
    core : Core sorts
    types : Types sorts core

  open Sorts sorts public
  open Core core public
  open Types types public

  private variable
    Γᴹ Γᴹ₀ Γᴹ₁ Δᴹ₀ Δᴹ₁ : Conᴹ Γ
    Aᴹ₀ Aᴹ₁ : Tyᴹ Γᴹ i A

  opaque
    unfolding coe

    ap-Conᴹ : Γ₀  Γ₁  Conᴹ Γ₀  Conᴹ Γ₁
    ap-Conᴹ refl = refl

    ap-Subᴹ₅ :
      (Δ₀₁ : Δ₀  Δ₁)  Δᴹ₀ ≡[ ap-Conᴹ Δ₀₁ ] Δᴹ₁ 
      (Γ₀₁ : Γ₀  Γ₁)  Γᴹ₀ ≡[ ap-Conᴹ Γ₀₁ ] Γᴹ₁ 
      γ₀ ≡[ ap-Sub Δ₀₁ Γ₀₁ ] γ₁  Subᴹ Δᴹ₀ Γᴹ₀ γ₀  Subᴹ Δᴹ₁ Γᴹ₁ γ₁
    ap-Subᴹ₅ refl refl refl refl refl = refl

    ap-Tyᴹ₄ :
      (Γ₀₁ : Γ₀  Γ₁)  Γᴹ₀ ≡[ ap-Conᴹ Γ₀₁ ] Γᴹ₁  (i₀₁ : i₀  i₁) 
      A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁  Tyᴹ Γᴹ₀ i₀ A₀  Tyᴹ Γᴹ₁ i₁ A₁
    ap-Tyᴹ₄ refl refl refl refl = refl

    ap-Tmᴹ₆ :
      (Γ₀₁ : Γ₀  Γ₁) (Γᴹ₀₁ : Γᴹ₀ ≡[ ap-Conᴹ Γ₀₁ ] Γᴹ₁) (i₀₁ : i₀  i₁) 
      (A₀₁ : A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁) 
      Aᴹ₀ ≡[ ap-Tyᴹ₄ Γ₀₁ Γᴹ₀₁ i₀₁ A₀₁ ] Aᴹ₁ 
      a₀ ≡[ ap-Tm₃ Γ₀₁ i₀₁ A₀₁ ] a₁  Tmᴹ Γᴹ₀ Aᴹ₀ a₀  Tmᴹ Γᴹ₁ Aᴹ₁ a₁
    ap-Tmᴹ₆ refl refl refl refl refl refl = refl

module Ind (M : DModel) where
  open DModel M

  ⟦_⟧ᶜ : (Γ : Con)  Conᴹ Γ

  postulate
    ⟦_⟧ᵀ : (A : Ty Γ i)  Tyᴹ  Γ ⟧ᶜ i A

    ⟧ᶜ = ◇ᴹ
   Γ  A ⟧ᶜ =  Γ ⟧ᶜ ▹ᴹ  A ⟧ᵀ

  opaque
    unfolding coe
    apᵈ-⟦⟧ᶜ : (Γ₀₁ : Γ₀  Γ₁)   Γ₀ ⟧ᶜ ≡[ ap-Conᴹ Γ₀₁ ]  Γ₁ ⟧ᶜ
    apᵈ-⟦⟧ᶜ refl = refl

    apᵈ-⟦⟧ᵀ :
      (Γ₀₁ : Γ₀  Γ₁) (i₀₁ : i₀  i₁) (A₀₁ : A₀ ≡[ ap-Ty₂ Γ₀₁ i₀₁ ] A₁) 
       A₀ ⟧ᵀ ≡[ ap-Tyᴹ₄ Γ₀₁ (apᵈ-⟦⟧ᶜ Γ₀₁) i₀₁ A₀₁ ]  A₁ ⟧ᵀ
    apᵈ-⟦⟧ᵀ refl refl refl = refl

  postulate
    ⟦⟧ᵀ-coe :
      {e : Ty Γ₀ i₀  Ty Γ₁ i₁} 
       coe e A₀ ⟧ᵀ 
      coe
        (ap-Tyᴹ₄ (Ty-inj-Γ e) (apᵈ-⟦⟧ᶜ (Ty-inj-Γ e)) (Ty-inj-i e) refl)
         A₀ ⟧ᵀ
    {-# REWRITE ⟦⟧ᵀ-coe #-}

  postulate
    ⟦_⟧ˢ : (γ : Sub Δ Γ)  Subᴹ  Δ ⟧ᶜ  Γ ⟧ᶜ γ
    ⟦⟧ˢ-coe :
      {e : Sub Δ₀ Γ₀  Sub Δ₁ Γ₁} 
       coe e γ₀ ⟧ˢ 
      coe
        (ap-Subᴹ₅
          (Sub-inj-Δ e)
          (apᵈ-⟦⟧ᶜ (Sub-inj-Δ e))
          (Sub-inj-Γ e)
          (apᵈ-⟦⟧ᶜ (Sub-inj-Γ e))
          refl)
         γ₀ ⟧ˢ
    {-# REWRITE ⟦⟧ˢ-coe  #-}
    ⟦⟧-∘ :  γ  δ ⟧ˢ   γ ⟧ˢ ∘ᴹ  δ ⟧ˢ
    {-# REWRITE ⟦⟧-∘ #-}
    ⟦⟧-id :  id ⟧ˢ  idᴹ  Subᴹ  Γ ⟧ᶜ  Γ ⟧ᶜ id
    {-# REWRITE ⟦⟧-id #-}

  postulate
    ⟦⟧-[]ᵀ :  A [ γ ]ᵀ ⟧ᵀ   A ⟧ᵀ [  γ ⟧ˢ ]ᵀᴹ
    {-# REWRITE ⟦⟧-[]ᵀ #-}

  postulate
    ⟦_⟧ᵗ : (a : Tm Γ A)  Tmᴹ  Γ ⟧ᶜ  A ⟧ᵀ a
    ⟦⟧ᵗ-coe :
      {e : Tm Γ₀ A₀  Tm Γ₁ A₁} 
       coe e a₀ ⟧ᵗ 
      coe
        (ap-Tmᴹ₆
          (Tm-inj-Γ e)
          (apᵈ-⟦⟧ᶜ (Tm-inj-Γ e))
          (Tm-inj-i e)
          (Tm-inj-A e)
          (apᵈ-⟦⟧ᵀ (Tm-inj-Γ e) (Tm-inj-i e) (Tm-inj-A e))
          refl)
         a₀ ⟧ᵗ
    {-# REWRITE ⟦⟧ᵗ-coe #-}
    ⟦⟧-[]ᵗ :  a [ γ ]ᵗ ⟧ᵗ   a ⟧ᵗ [  γ ⟧ˢ ]ᵗᴹ
    {-# REWRITE ⟦⟧-[]ᵗ #-}

  postulate
    ⟦⟧-ε :  ε ⟧ˢ  εᴹ  Subᴹ  Γ ⟧ᶜ   ⟧ᶜ ε
    {-# REWRITE ⟦⟧-ε #-}
    ⟦⟧-p :  p ⟧ˢ  pᴹ  Subᴹ  Γ  A ⟧ᶜ  Γ ⟧ᶜ p
    {-# REWRITE ⟦⟧-p #-}
    ⟦⟧-q :  q ⟧ᵗ  qᴹ  Tmᴹ  Γ  A ⟧ᶜ  A [ p ]ᵀ ⟧ᵀ q
    {-# REWRITE ⟦⟧-q #-}
    ⟦⟧-, :  γ , a ⟧ˢ  ( γ ⟧ˢ ,ᴹ  a ⟧ᵗ)
    {-# REWRITE ⟦⟧-, #-}

  postulate
    ⟦⟧-U :  U i ⟧ᵀ  Uᴹ i  Tyᴹ  Γ ⟧ᶜ (suc i) (U i)
    {-# REWRITE ⟦⟧-U #-}
    ⟦⟧-El :  El α ⟧ᵀ  Elᴹ  α ⟧ᵗ
    {-# REWRITE ⟦⟧-El #-}
    ⟦⟧-c :  c A ⟧ᵗ  cᴹ  A ⟧ᵀ
    {-# REWRITE ⟦⟧-c #-}

    ⟦⟧-Lift :  Lift A ⟧ᵀ  Liftᴹ  A ⟧ᵀ
    {-# REWRITE ⟦⟧-Lift #-}
    ⟦⟧-lower :  lower a ⟧ᵗ  lowerᴹ  a ⟧ᵗ
    {-# REWRITE ⟦⟧-lower #-}
    ⟦⟧-lift :  lift a ⟧ᵗ  liftᴹ  a ⟧ᵗ
    {-# REWRITE ⟦⟧-lift #-}

    ⟦⟧-Π :  Π A B ⟧ᵀ  Πᴹ  A ⟧ᵀ  B ⟧ᵀ
    {-# REWRITE ⟦⟧-Π #-}
    ⟦⟧-app :  app f a ⟧ᵗ  appᴹ  f ⟧ᵗ  a ⟧ᵗ
    {-# REWRITE ⟦⟧-app #-}
    ⟦⟧-lam :  lam b ⟧ᵗ  lamᴹ  b ⟧ᵗ
    {-# REWRITE ⟦⟧-lam #-}