{-# OPTIONS --without-K --prop --rewriting --confluence-check --postfix-projections #-} module TT.CwF-SSC where open import TT.Lib open import TT.SSC.Syntax open import TT.SSC.Parallel import TT.CwF.Syntax as C open import TT.CwF.Ind module C→S where open DM open DModel M : DModel M .sorts .Conᴹ _ = Con M .sorts .Subᴹ Δ Γ _ = Tms Δ Γ M .sorts .Tyᴹ Γ i _ = Ty Γ i M .sorts .Tmᴹ Γ A _ = Tm Γ A M .core ._∘ᴹ_ = _∘ᵗ_ M .core .assocᴹ = dep assocᵗ M .core .idᴹ = idᵗ M .core .idrᴹ = dep idrᵗ M .core .idlᴹ = dep idlᵗ M .core ._[_]ᵀᴹ = _[_]ᵀᵗ M .core .[]ᵀ-∘ᴹ {γᴹ = γᵗ} {δᴹ = δᵗ} = dep ([]ᵀ-∘ᵗ γᵗ δᵗ) M .core .[]ᵀ-idᴹ = dep []ᵀ-idᵗ M .core ._[_]ᵗᴹ = _[_]ᵗᵗ M .core .[]ᵗ-∘ᴹ {γᴹ = γᵗ} {δᴹ = δᵗ} = []ᵗ-∘ᵗ γᵗ δᵗ M .core .[]ᵗ-idᴹ = []ᵗ-idᵗ M .core .◇ᴹ = ◇ M .core .εᴹ = ε M .core .ε-∘ᴹ = reflᵈ M .core .◇-ηᴹ = reflᵈ M .core ._▹ᴹ_ = _▹_ M .core .pᴹ = pᵗ M .core .qᴹ = qᵗ M .core ._,ᴹ_ = _,_ M .core .,-∘ᴹ = reflᵈ M .core .▹-β₁ᴹ {γᴹ = γᵗ} = dep (▹-β₁ᵗ γᵗ) M .core .▹-β₂ᴹ {γᴹ = γᵗ} = ▹-β₂ᵗ γᵗ M .core .▹-ηᴹ = reflᵈ M .types .Uᴹ = U M .types .U-[]ᴹ {γᴹ = γᵗ} = dep (U-[]ᵗ γᵗ) M .types .Elᴹ = El M .types .El-[]ᴹ {γᴹ = γᵗ} = dep (El-[]ᵗ γᵗ) M .types .cᴹ = c M .types .c-[]ᴹ {γᴹ = γᵗ} = c-[]ᵗ γᵗ M .types .U-βᴹ = dep U-β M .types .U-ηᴹ = dep U-η M .types .Liftᴹ = Lift M .types .Lift-[]ᴹ {γᴹ = γᵗ} = dep (Lift-[]ᵗ γᵗ) M .types .lowerᴹ = lower M .types .lower-[]ᴹ {γᴹ = γᵗ} = dep (lower-[]ᵗ γᵗ) M .types .liftᴹ = lift M .types .lift-[]ᴹ {γᴹ = γᵗ} = lift-[]ᵗ γᵗ M .types .Lift-βᴹ = dep Lift-β M .types .Lift-ηᴹ = dep Lift-η M .types .Πᴹ = Π M .types .Π-[]ᴹ {γᴹ = γᵗ} = dep (Π-[]ᵗ γᵗ) M .types .appᴹ = appᵗ M .types .app-[]ᴹ {γᴹ = γᵗ} = app-[]ᵗ γᵗ M .types .lamᴹ = lam M .types .lam-[]ᴹ {γᴹ = γᵗ} = lam-[]ᵗ γᵗ M .types .Π-βᴹ = dep Π-βᵗ M .types .Π-ηᴹ = Π-ηᵗ open Ind M public open C→S public using () renaming (⟦_⟧ᶜ to C→Sᶜ; ⟦_⟧ˢ to C→T; ⟦_⟧ᵀ to C→Sᵀ; ⟦_⟧ᵗ to C→Sᵗ) private variable Γ Δ : C.Con γ₀ γ₁ : C.Sub Δ Γ ap-C→T : γ₀ ≡ γ₁ → C→T γ₀ ≡ C→T γ₁ ap-C→T refl = refl